Nuprl Lemma : pscm-id-comp

[C:SmallCategory]. ∀[A,B:ps_context{j:l}(C)]. ∀[sigma:psc_map{j:l}(C; A; B)].
  ((sigma 1(A) sigma ∈ psc_map{j:l}(C; A; B)) ∧ (1(B) sigma sigma ∈ psc_map{j:l}(C; A; B)))


Proof




Definitions occuring in Statement :  pscm-id: 1(X) pscm-comp: F psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] and: P ∧ Q equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B psc_map: A ⟶ B ps_context: __⊢ and: P ∧ Q cand: c∧ B all: x:A. B[x]
Lemmas referenced :  pscm-comp-sq pscm-id-sq psc_map_wf ps_context_wf small-category-cumulativity-2 small-category_wf trans-id-property op-cat_wf type-cat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality universeIsType instantiate applyEquality because_Cache sqequalRule Error :memTop,  dependent_functionElimination productElimination independent_pairFormation

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:ps\_context\{j:l\}(C)].  \mforall{}[sigma:psc\_map\{j:l\}(C;  A;  B)].
    ((sigma  o  1(A)  =  sigma)  \mwedge{}  (1(B)  o  sigma  =  sigma))



Date html generated: 2020_05_20-PM-01_24_17
Last ObjectModification: 2020_04_01-AM-11_00_33

Theory : presheaf!models!of!type!theory


Home Index