Nuprl Lemma : trans-id-property

C1,C2:SmallCategory. ∀x,y:Functor(C1;C2). ∀f:nat-trans(C1;C2;x;y).
  ((identity-trans(C1;C2;x) f ∈ nat-trans(C1;C2;x;y)) ∧ (f identity-trans(C1;C2;y) f ∈ nat-trans(C1;C2;x;y)))


Proof




Definitions occuring in Statement :  trans-comp: t1 t2 identity-trans: identity-trans(C;D;F) nat-trans: nat-trans(C;D;F;G) cat-functor: Functor(C1;C2) small-category: SmallCategory all: x:A. B[x] and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B nat-trans: nat-trans(C;D;F;G) identity-trans: identity-trans(C;D;F) trans-comp: t1 t2 member: t ∈ T top: Top so_lambda: λ2x.t[x] so_apply: x[s] uall: [x:A]. B[x] prop:
Lemmas referenced :  ap_mk_nat_trans_lemma cat-comp-ident functor-ob_wf cat-ob_wf all_wf cat-arrow_wf equal_wf cat-comp_wf functor-arrow_wf nat-trans_wf cat-functor_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename equalitySymmetry dependent_set_memberEquality functionExtensionality sqequalRule introduction extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality applyEquality productElimination lambdaEquality because_Cache independent_pairFormation

Latex:
\mforall{}C1,C2:SmallCategory.  \mforall{}x,y:Functor(C1;C2).  \mforall{}f:nat-trans(C1;C2;x;y).
    ((identity-trans(C1;C2;x)  o  f  =  f)  \mwedge{}  (f  o  identity-trans(C1;C2;y)  =  f))



Date html generated: 2020_05_20-AM-07_51_44
Last ObjectModification: 2017_01_10-PM-04_46_00

Theory : small!categories


Home Index