Nuprl Lemma : trans-id-property
∀C1,C2:SmallCategory. ∀x,y:Functor(C1;C2). ∀f:nat-trans(C1;C2;x;y).
  ((identity-trans(C1;C2;x) o f = f ∈ nat-trans(C1;C2;x;y)) ∧ (f o identity-trans(C1;C2;y) = f ∈ nat-trans(C1;C2;x;y)))
Proof
Definitions occuring in Statement : 
trans-comp: t1 o t2
, 
identity-trans: identity-trans(C;D;F)
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
identity-trans: identity-trans(C;D;F)
, 
trans-comp: t1 o t2
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
ap_mk_nat_trans_lemma, 
cat-comp-ident, 
functor-ob_wf, 
cat-ob_wf, 
all_wf, 
cat-arrow_wf, 
equal_wf, 
cat-comp_wf, 
functor-arrow_wf, 
nat-trans_wf, 
cat-functor_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
equalitySymmetry, 
dependent_set_memberEquality, 
functionExtensionality, 
sqequalRule, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
productElimination, 
lambdaEquality, 
because_Cache, 
independent_pairFormation
Latex:
\mforall{}C1,C2:SmallCategory.  \mforall{}x,y:Functor(C1;C2).  \mforall{}f:nat-trans(C1;C2;x;y).
    ((identity-trans(C1;C2;x)  o  f  =  f)  \mwedge{}  (f  o  identity-trans(C1;C2;y)  =  f))
Date html generated:
2020_05_20-AM-07_51_44
Last ObjectModification:
2017_01_10-PM-04_46_00
Theory : small!categories
Home
Index