Nuprl Lemma : csm-cubical-id-fun

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[H:j⊢]. ∀[s:H j⟶ X].  ((cubical-id-fun(X))s cubical-id-fun(H) ∈ {H ⊢ _:((A)s ⟶ (A)s)})


Proof




Definitions occuring in Statement :  cubical-id-fun: cubical-id-fun(X) cubical-fun: (A ⟶ B) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B cubical-fun: (A ⟶ B) presheaf-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) cube-cat: CubeCat all: x:A. B[x] cubical-type-at: A(a) presheaf-type-at: A(a) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm-ap-term: (t)s pscm-ap-term: (t)s cubical-id-fun: cubical-id-fun(X) presheaf-id-fun: presheaf-id-fun(X) cubical-lam: cubical-lam(X;b) presheaf-lam: presheaf-lam(X;b) cubical-lambda: b) presheaf-lambda: b) cc-snd: q psc-snd: q cc-adjoin-cube: (v;u) psc-adjoin-set: (v;u)
Lemmas referenced :  pscm-presheaf-id-fun cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  X].    ((cubical-id-fun(X))s  =  cubical-id-fun(H))



Date html generated: 2020_05_20-PM-02_25_25
Last ObjectModification: 2020_04_03-PM-08_35_33

Theory : cubical!type!theory


Home Index