Step
*
1
of Lemma
csm-cubical-id-is-equiv
1. G : CubicalSet{j}
2. K : CubicalSet{j}
3. tau : K j⟶ G
4. A : {G ⊢ _}
5. (cubical-id-fun(G))p = cubical-id-fun(G.A) ∈ {G.A ⊢ _:((A)p ⟶ (A)p)}
6. cubical-id-fun(G) ∈ {G ⊢ _:(A ⟶ A)}
7. G.A ⊢ Fiber((cubical-id-fun(G))p;q) = Σ (A)p (Path_((A)p)p (q)p q) ∈ {G.A ⊢ _}
8. (cubical-id-fun(G))p = cubical-id-fun(G.A) ∈ {G.A ⊢ _:((A)p ⟶ (A)p)}
9. ((λcontr-witness(G.A;id-fiber-center(G;A);id-fiber-contraction(G;A))))tau
= (λ(contr-witness(G.A;id-fiber-center(G;A);id-fiber-contraction(G;A)))tau+)
∈ {K ⊢ _:(ΠA Contractible(Fiber((cubical-id-fun(G))p;q)))tau}
10. (cubical-id-fun(K))p ∈ {K.(A)tau ⊢ _:(((A)tau)p ⟶ ((A)tau)p)}
⊢ (λcontr-witness(K.(A)tau;id-fiber-center(K;(A)tau);id-fiber-contraction(K;(A)tau)))
= ((λcontr-witness(G.A;id-fiber-center(G;A);id-fiber-contraction(G;A))))tau
∈ {K ⊢ _:Π(A)tau Contractible(Fiber((cubical-id-fun(K))p;q))}
BY
{ Assert ⌜{K ⊢ _:Π(A)tau Contractible(Fiber((cubical-id-fun(K))p;q))}
= {K ⊢ _:(ΠA Contractible(Fiber((cubical-id-fun(G))p;q)))tau}
∈ 𝕌{[i' | j']}⌝⋅ }
1
.....assertion.....
1. G : CubicalSet{j}
2. K : CubicalSet{j}
3. tau : K j⟶ G
4. A : {G ⊢ _}
5. (cubical-id-fun(G))p = cubical-id-fun(G.A) ∈ {G.A ⊢ _:((A)p ⟶ (A)p)}
6. cubical-id-fun(G) ∈ {G ⊢ _:(A ⟶ A)}
7. G.A ⊢ Fiber((cubical-id-fun(G))p;q) = Σ (A)p (Path_((A)p)p (q)p q) ∈ {G.A ⊢ _}
8. (cubical-id-fun(G))p = cubical-id-fun(G.A) ∈ {G.A ⊢ _:((A)p ⟶ (A)p)}
9. ((λcontr-witness(G.A;id-fiber-center(G;A);id-fiber-contraction(G;A))))tau
= (λ(contr-witness(G.A;id-fiber-center(G;A);id-fiber-contraction(G;A)))tau+)
∈ {K ⊢ _:(ΠA Contractible(Fiber((cubical-id-fun(G))p;q)))tau}
10. (cubical-id-fun(K))p ∈ {K.(A)tau ⊢ _:(((A)tau)p ⟶ ((A)tau)p)}
⊢ {K ⊢ _:Π(A)tau Contractible(Fiber((cubical-id-fun(K))p;q))}
= {K ⊢ _:(ΠA Contractible(Fiber((cubical-id-fun(G))p;q)))tau}
∈ 𝕌{[i' | j']}
2
1. G : CubicalSet{j}
2. K : CubicalSet{j}
3. tau : K j⟶ G
4. A : {G ⊢ _}
5. (cubical-id-fun(G))p = cubical-id-fun(G.A) ∈ {G.A ⊢ _:((A)p ⟶ (A)p)}
6. cubical-id-fun(G) ∈ {G ⊢ _:(A ⟶ A)}
7. G.A ⊢ Fiber((cubical-id-fun(G))p;q) = Σ (A)p (Path_((A)p)p (q)p q) ∈ {G.A ⊢ _}
8. (cubical-id-fun(G))p = cubical-id-fun(G.A) ∈ {G.A ⊢ _:((A)p ⟶ (A)p)}
9. ((λcontr-witness(G.A;id-fiber-center(G;A);id-fiber-contraction(G;A))))tau
= (λ(contr-witness(G.A;id-fiber-center(G;A);id-fiber-contraction(G;A)))tau+)
∈ {K ⊢ _:(ΠA Contractible(Fiber((cubical-id-fun(G))p;q)))tau}
10. (cubical-id-fun(K))p ∈ {K.(A)tau ⊢ _:(((A)tau)p ⟶ ((A)tau)p)}
11. {K ⊢ _:Π(A)tau Contractible(Fiber((cubical-id-fun(K))p;q))}
= {K ⊢ _:(ΠA Contractible(Fiber((cubical-id-fun(G))p;q)))tau}
∈ 𝕌{[i' | j']}
⊢ (λcontr-witness(K.(A)tau;id-fiber-center(K;(A)tau);id-fiber-contraction(K;(A)tau)))
= ((λcontr-witness(G.A;id-fiber-center(G;A);id-fiber-contraction(G;A))))tau
∈ {K ⊢ _:Π(A)tau Contractible(Fiber((cubical-id-fun(K))p;q))}
Latex:
Latex:
1. G : CubicalSet\{j\}
2. K : CubicalSet\{j\}
3. tau : K j{}\mrightarrow{} G
4. A : \{G \mvdash{} \_\}
5. (cubical-id-fun(G))p = cubical-id-fun(G.A)
6. cubical-id-fun(G) \mmember{} \{G \mvdash{} \_:(A {}\mrightarrow{} A)\}
7. G.A \mvdash{} Fiber((cubical-id-fun(G))p;q) = \mSigma{} (A)p (Path\_((A)p)p (q)p q)
8. (cubical-id-fun(G))p = cubical-id-fun(G.A)
9. ((\mlambda{}contr-witness(G.A;id-fiber-center(G;A);id-fiber-contraction(G;A))))tau
= (\mlambda{}(contr-witness(G.A;id-fiber-center(G;A);id-fiber-contraction(G;A)))tau+)
10. (cubical-id-fun(K))p \mmember{} \{K.(A)tau \mvdash{} \_:(((A)tau)p {}\mrightarrow{} ((A)tau)p)\}
\mvdash{} (\mlambda{}contr-witness(K.(A)tau;id-fiber-center(K;(A)tau);id-fiber-contraction(K;(A)tau)))
= ((\mlambda{}contr-witness(G.A;id-fiber-center(G;A);id-fiber-contraction(G;A))))tau
By
Latex:
Assert \mkleeneopen{}\{K \mvdash{} \_:\mPi{}(A)tau Contractible(Fiber((cubical-id-fun(K))p;q))\}
= \{K \mvdash{} \_:(\mPi{}A Contractible(Fiber((cubical-id-fun(G))p;q)))tau\}\mkleeneclose{}\mcdot{}
Home
Index