Nuprl Lemma : csm-cubical-id-is-equiv

[G,K:j⊢]. ∀[tau:K j⟶ G]. ∀[A:{G ⊢ _}].
  (cubical-id-is-equiv(K;(A)tau) (cubical-id-is-equiv(G;A))tau ∈ {K ⊢ _:IsEquiv((A)tau;(A)tau;cubical-id-fun(K))})


Proof




Definitions occuring in Statement :  cubical-id-is-equiv: cubical-id-is-equiv(X;T) is-cubical-equiv: IsEquiv(T;A;w) cubical-id-fun: cubical-id-fun(X) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-id-is-equiv: cubical-id-is-equiv(X;T) is-cubical-equiv: IsEquiv(T;A;w) subtype_rel: A ⊆B all: x:A. B[x] true: True uimplies: supposing a squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g prop: cubical-type: {X ⊢ _} cc-snd: q csm-ap-type: (AF)s cc-fst: p csm-comp: F csm-ap: (s)x csm-adjoin: (s;u) csm-ap-term: (t)s contr-witness: contr-witness(X;c;p) contractible-type: Contractible(A) csm-id: 1(X) csm-id-adjoin: [u] cubical-fiber: Fiber(w;a) cubical-sigma: Σ B cc-adjoin-cube: (v;u) csm+: tau+ cubical-term: {X ⊢ _:A} I_cube: A(I) functor-ob: ob(F) cube-context-adjoin: X.A cubical-type-at: A(a) path-type: (Path_A b) cubical-subset: cubical-subset pathtype: Path(A) cubical-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) cubical-term-at: u(a) cubical-app: app(w; u) cubical-id-fun: cubical-id-fun(X) cubical-lam: cubical-lam(X;b) cubical-lambda: b) cubical-type-ap-morph: (u f)
Lemmas referenced :  csm-cubical-id-fun cubical_set_cumulativity-i-j cube-context-adjoin_wf cubical-type-cumulativity2 cc-fst_wf cubical-id-fun_wf cubical-fiber-id-fun csm-ap-type_wf cc-snd_wf cubical-type_wf cube_set_map_wf cubical_set_wf csm-ap-cubical-lambda contractible-type_wf cubical-fiber_wf csm-ap-term_wf cubical-fun_wf contr-witness_wf id-fiber-center_wf id-fiber-contraction_wf subtype_rel-equal cubical-term_wf path-type_wf cubical-type-cumulativity equal_wf iff_weakening_equal cubical-sigma_wf subtype_rel_self csm-cubical-fun squash_wf true_wf istype-universe cubical-pi_wf csm-cubical-pi csm-contractible-type csm-adjoin_wf csm-comp_wf csm-cubical-fiber cubical-lambda_wf csm-cubical-pair cubical-pair_wf csm-id-adjoin_wf csm-id-fiber-center cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma csm-cubical-lambda csm+_wf csm-id_wf csm-cubical-sigma path-type-q-csm-adjoin csm-comp-term q-csm+ csm-comp-type p-csm+-type csm-ap-id-type csm-path-type csm_ap_term_fst_adjoin_lemma csm+-p-type csm+-p-term equal_functionality_wrt_subtype_rel2 subset-cubical-term2 sub_cubical_set_self p-csm+-term csm-ap-term-snd-adjoin csm-id-fiber-contraction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache dependent_functionElimination universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType natural_numberEquality equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt imageElimination imageMemberEquality baseClosed productElimination independent_functionElimination dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype applyLambdaEquality setElimination rename hyp_replacement universeEquality Error :memTop,  cumulativity lambdaFormation_alt

Latex:
\mforall{}[G,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  G].  \mforall{}[A:\{G  \mvdash{}  \_\}].
    (cubical-id-is-equiv(K;(A)tau)  =  (cubical-id-is-equiv(G;A))tau)



Date html generated: 2020_05_20-PM-03_33_58
Last ObjectModification: 2020_04_08-PM-11_34_28

Theory : cubical!type!theory


Home Index