Nuprl Lemma : cubical-fiber-id-fun
∀X:j⊢. ∀T:{X ⊢ _}.  ∀[u:{X ⊢ _:T}]. (X ⊢ Fiber(cubical-id-fun(X);u) = Σ T (Path_(T)p (u)p q) ∈ {X ⊢ _})
Proof
Definitions occuring in Statement : 
cubical-fiber: Fiber(w;a)
, 
path-type: (Path_A a b)
, 
cubical-sigma: Σ A B
, 
cubical-id-fun: cubical-id-fun(X)
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
cubical-fiber: Fiber(w;a)
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
true: True
Lemmas referenced : 
cubical-sigma_wf, 
squash_wf, 
true_wf, 
cubical-type_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
path-type_wf, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-ap-term_wf, 
cubical-term_wf, 
cubical_set_wf, 
csm-cubical-id-fun, 
cubical-app_wf_fun, 
cc-snd_wf, 
equal_wf, 
istype-universe, 
cubical-app-id-fun
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
applyEquality, 
thin, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
instantiate, 
sqequalRule, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
hyp_replacement, 
universeEquality
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}T:\{X  \mvdash{}  \_\}.    \mforall{}[u:\{X  \mvdash{}  \_:T\}].  (X  \mvdash{}  Fiber(cubical-id-fun(X);u)  =  \mSigma{}  T  (Path\_(T)p  (u)p  q))
Date html generated:
2020_05_20-PM-03_27_34
Last ObjectModification:
2020_04_07-PM-05_21_46
Theory : cubical!type!theory
Home
Index