Nuprl Lemma : cubical-fiber-id-fun

X:j⊢. ∀T:{X ⊢ _}.  ∀[u:{X ⊢ _:T}]. (X ⊢ Fiber(cubical-id-fun(X);u) = Σ (Path_(T)p (u)p q) ∈ {X ⊢ _})


Proof




Definitions occuring in Statement :  cubical-fiber: Fiber(w;a) path-type: (Path_A b) cubical-sigma: Σ B cubical-id-fun: cubical-id-fun(X) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] cubical-fiber: Fiber(w;a) member: t ∈ T squash: T prop: subtype_rel: A ⊆B true: True
Lemmas referenced :  cubical-sigma_wf squash_wf true_wf cubical-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 path-type_wf csm-ap-type_wf cc-fst_wf csm-ap-term_wf cubical-term_wf cubical_set_wf csm-cubical-id-fun cubical-app_wf_fun cc-snd_wf equal_wf istype-universe cubical-app-id-fun
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType instantiate sqequalRule because_Cache natural_numberEquality imageMemberEquality baseClosed applyLambdaEquality hyp_replacement universeEquality

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}T:\{X  \mvdash{}  \_\}.    \mforall{}[u:\{X  \mvdash{}  \_:T\}].  (X  \mvdash{}  Fiber(cubical-id-fun(X);u)  =  \mSigma{}  T  (Path\_(T)p  (u)p  q))



Date html generated: 2020_05_20-PM-03_27_34
Last ObjectModification: 2020_04_07-PM-05_21_46

Theory : cubical!type!theory


Home Index