Nuprl Lemma : csm-ap-term-snd-adjoin

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[xx:Top].  ((q)(xx;u) u ∈ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  csm-adjoin: (s;u) cc-snd: q csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet csm-ap-term: (t)s pscm-ap-term: (t)s cc-snd: q psc-snd: q csm-ap: (s)x pscm-ap: (s)x csm-adjoin: (s;u) pscm-adjoin: (s;u)
Lemmas referenced :  pscm-ap-term-snd-adjoin cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[xx:Top].    ((q)(xx;u)  =  u)



Date html generated: 2020_05_20-PM-01_57_55
Last ObjectModification: 2020_04_03-PM-08_31_53

Theory : cubical!type!theory


Home Index