Nuprl Lemma : pscm-ap-term-snd-adjoin

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[xx:Top].  ((q)(xx;u) u ∈ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  pscm-adjoin: (s;u) psc-snd: q pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] top: Top equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pscm-ap-term: (t)s pscm-adjoin: (s;u) pscm-ap: (s)x psc-snd: q pi2: snd(t) subtype_rel: A ⊆B presheaf-term: {X ⊢ _:A} uimplies: supposing a
Lemmas referenced :  istype-top presheaf-term_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf presheaf-term-equal I_set_wf cat-ob_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule hypothesis extract_by_obid sqequalHypSubstitution isect_memberEquality_alt isectElimination thin hypothesisEquality axiomEquality isectIsTypeImplies inhabitedIsType universeIsType instantiate applyEquality equalitySymmetry lambdaEquality_alt setElimination rename independent_isectElimination functionExtensionality_alt

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[xx:Top].
    ((q)(xx;u)  =  u)



Date html generated: 2020_05_20-PM-01_28_28
Last ObjectModification: 2020_04_02-PM-01_56_11

Theory : presheaf!models!of!type!theory


Home Index