Nuprl Lemma : pscm-ap-term-snd-adjoin
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[xx:Top].  ((q)(xx;u) = u ∈ {X ⊢ _:A})
Proof
Definitions occuring in Statement : 
pscm-adjoin: (s;u)
, 
psc-snd: q
, 
pscm-ap-term: (t)s
, 
presheaf-term: {X ⊢ _:A}
, 
presheaf-type: {X ⊢ _}
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
equal: s = t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pscm-ap-term: (t)s
, 
pscm-adjoin: (s;u)
, 
pscm-ap: (s)x
, 
psc-snd: q
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
presheaf-term: {X ⊢ _:A}
, 
uimplies: b supposing a
Lemmas referenced : 
istype-top, 
presheaf-term_wf, 
presheaf-type_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf, 
presheaf-term-equal, 
I_set_wf, 
cat-ob_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
instantiate, 
applyEquality, 
equalitySymmetry, 
lambdaEquality_alt, 
setElimination, 
rename, 
independent_isectElimination, 
functionExtensionality_alt
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[xx:Top].
    ((q)(xx;u)  =  u)
Date html generated:
2020_05_20-PM-01_28_28
Last ObjectModification:
2020_04_02-PM-01_56_11
Theory : presheaf!models!of!type!theory
Home
Index