Nuprl Lemma : csm-id-fiber-contraction

[G,K:j⊢]. ∀[tau:K j⟶ G]. ∀[A:{G ⊢ _}].
  (id-fiber-contraction(K;(A)tau)
  (id-fiber-contraction(G;A))tau++
  ∈ {K.(A)tau.Σ ((A)tau)p (Path_(((A)tau)p)p (q)p q) ⊢ _
     :(Path_(Σ ((A)tau)p (Path_(((A)tau)p)p (q)p q))p (id-fiber-center(K;(A)tau))p q)})


Proof




Definitions occuring in Statement :  id-fiber-contraction: id-fiber-contraction(X;T) id-fiber-center: id-fiber-center(X;T) path-type: (Path_A b) cubical-sigma: Σ B csm+: tau+ cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a pi1: fst(t) compose: g csm-adjoin: (s;u) csm-ap: (s)x csm-comp: F csm+: tau+ csm-ap-type: (AF)s cc-fst: p cc-snd: q cubical-type: {X ⊢ _} implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} true: True squash: T all: x:A. B[x] prop: cat-comp: cat-comp(C) names-hom: I ⟶ J type-cat: TypeCat pi2: snd(t) cat-arrow: cat-arrow(C) quotient: x,y:A//B[x; y] fset: fset(T) cube-cat: CubeCat spreadn: spread4 op-cat: op-cat(C) cat-ob: cat-ob(C) nat-trans: nat-trans(C;D;F;G) psc_map: A ⟶ B cube_set_map: A ⟶ B cube-context-adjoin: X.A cc-adjoin-cube: (v;u) cube-set-restriction: f(s) I_cube: A(I) ps_context: __⊢ cubical_set: CubicalSet functor-ob: ob(F) so_apply: x[s] so_lambda: λ2x.t[x] DeMorgan-algebra: DeMorganAlgebra btrue: tt mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice free-dist-lattice: free-dist-lattice(T; eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dM: dM(I) record-select: r.x lattice-point: Point(l) interval-presheaf: 𝕀 constant-cubical-type: (X) interval-type: 𝕀 cubical-type-at: A(a) spreadn: spread3 sigma-elim-csm: SigmaElim cubical-fst: p.1 cubical-app: app(w; u) csm-ap-term: (t)s cubicalpath-app: pth r cubical-lambda: b) cubical-pair: cubical-pair(u;v) cubical-path-app: pth r term-to-path: <>(a) singleton-contraction: singleton-contraction(X;pth) path-eta: path-eta(pth) id-fiber-contraction: id-fiber-contraction(X;T) cubical-snd: p.2 path-contraction: path-contraction(X;pth) cubical-term-at: u(a) interval-meet: r ∧ s
Lemmas referenced :  paths-equal-eta cube-context-adjoin_wf cubical_set_cumulativity-i-j csm-ap-type_wf cubical-type-cumulativity2 cubical-sigma_wf cc-fst_wf path-type_wf csm-ap-term_wf cc-snd_wf id-fiber-center_wf id-fiber-contraction_wf cubical-type_wf cube_set_map_wf cubical_set_wf p-csm+-type csm-comp-type q-csm+ csm-comp-term csm-comp_wf path-type-q-csm-adjoin iff_weakening_equal csm-cubical-sigma equal_wf csm+_wf subtype_rel-equal cube_set_map_cumulativity-i-j csm+_wf+ csm-path-type istype-universe true_wf squash_wf subtype_rel_self cubical-term-eqcd path-type-sub-pathtype cubical-term_wf pathtype_wf cubical-type-cumulativity path-eta_wf cubical-sigma-p-p interval-type_wf cubical-term-equal cube_set_restriction_pair_lemma I_cube_pair_redex_lemma cubical-sigma-at path-type-at path-type-ap-morph cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma csm-cubical-type-ap-morph I_cube_wf cat-ob_wf small-category-cumulativity-2 type-cat_wf cube-cat_wf op-cat_wf functor-ob_wf nh-id-left nh-id_wf nh-comp_wf cube-set-restriction-when-id DeMorgan-algebra-axioms_wf lattice-join_wf lattice-meet_wf bounded-lattice-axioms_wf bounded-lattice-structure_wf subtype_rel_transitivity DeMorgan-algebra-structure-subtype bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf DeMorgan-algebra-structure_wf subtype_rel_set dM_wf lattice-point_wf cc_fst_adjoin_cube_lemma nat_wf fset_wf cc-fst_wf_interval cubical-fst_wf csm-adjoin_wf csm-adjoin-id-adjoin cubical-snd_wf subtype_rel_universe1 equal_functionality_wrt_subtype_rel2 sub_cubical_set_self subset-cubical-term2 interval-type-at interval-type-ap-morph csm-ap-type-at csm-ap_wf cubical-type-at_wf dM-lift_wf2 cubical-sigma-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache equalityTransitivity equalitySymmetry independent_isectElimination universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType Error :memTop,  rename setElimination independent_functionElimination productElimination baseClosed imageMemberEquality natural_numberEquality imageElimination lambdaEquality_alt dependent_functionElimination universeEquality hyp_replacement functionExtensionality functionEquality isectEquality cumulativity productEquality lambdaFormation_alt equalityIstype

Latex:
\mforall{}[G,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  G].  \mforall{}[A:\{G  \mvdash{}  \_\}].
    (id-fiber-contraction(K;(A)tau)  =  (id-fiber-contraction(G;A))tau++)



Date html generated: 2020_05_20-PM-03_32_33
Last ObjectModification: 2020_05_01-PM-06_35_02

Theory : cubical!type!theory


Home Index