Nuprl Lemma : paths-equal-eta

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[p:{X ⊢ _:(Path_A b)}]. ∀[q:{X ⊢ _:Path(A)}].
  q ∈ {X ⊢ _:(Path_A b)} supposing path-eta(p) path-eta(q) ∈ {X.𝕀 ⊢ _:(A)p}


Proof




Definitions occuring in Statement :  path-eta: path-eta(pth) path-type: (Path_A b) pathtype: Path(A) interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  paths-equal equal-paths-eta cubical_set_cumulativity-i-j cubical-type-cumulativity2 path-type-subtype cubical-term_wf cube-context-adjoin_wf interval-type_wf csm-ap-type_wf cc-fst_wf path-eta_wf pathtype_wf path-type_wf cubical-type_wf cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination instantiate applyEquality sqequalRule equalityIstype universeIsType because_Cache inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[p:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].  \mforall{}[q:\{X  \mvdash{}  \_:Path(A)\}].
    p  =  q  supposing  path-eta(p)  =  path-eta(q)



Date html generated: 2020_05_20-PM-03_19_16
Last ObjectModification: 2020_04_06-PM-06_35_19

Theory : cubical!type!theory


Home Index