Nuprl Lemma : equal-paths-eta

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[p,q:{X ⊢ _:Path(A)}].
  q ∈ {X ⊢ _:Path(A)} supposing path-eta(p) path-eta(q) ∈ {X.𝕀 ⊢ _:(A)p}


Proof




Definitions occuring in Statement :  path-eta: path-eta(pth) pathtype: Path(A) interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] pathtype: Path(A) cubical-lam: cubical-lam(X;b) term-to-path: <>(a) cubicalpath-app: pth r path-eta: path-eta(pth)
Lemmas referenced :  cubical-term_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf csm-ap-type_wf cc-fst_wf cubical-type-cumulativity2 path-eta_wf pathtype_wf cubical-type_wf cubical_set_wf term-to-path_wf cubical-fun-eta
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalityIstype universeIsType cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache applyLambdaEquality dependent_functionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[p,q:\{X  \mvdash{}  \_:Path(A)\}].    p  =  q  supposing  path-eta(p)  =  path-eta(q)



Date html generated: 2020_05_20-PM-03_19_05
Last ObjectModification: 2020_04_06-PM-06_35_07

Theory : cubical!type!theory


Home Index