Nuprl Lemma : equal-paths-eta
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[p,q:{X ⊢ _:Path(A)}].
  p = q ∈ {X ⊢ _:Path(A)} supposing path-eta(p) = path-eta(q) ∈ {X.𝕀 ⊢ _:(A)p}
Proof
Definitions occuring in Statement : 
path-eta: path-eta(pth)
, 
pathtype: Path(A)
, 
interval-type: 𝕀
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
pathtype: Path(A)
, 
cubical-lam: cubical-lam(X;b)
, 
term-to-path: <>(a)
, 
cubicalpath-app: pth @ r
, 
path-eta: path-eta(pth)
Lemmas referenced : 
cubical-term_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
csm-ap-type_wf, 
cc-fst_wf, 
cubical-type-cumulativity2, 
path-eta_wf, 
pathtype_wf, 
cubical-type_wf, 
cubical_set_wf, 
term-to-path_wf, 
cubical-fun-eta
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
equalityIstype, 
universeIsType, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
applyLambdaEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[p,q:\{X  \mvdash{}  \_:Path(A)\}].    p  =  q  supposing  path-eta(p)  =  path-eta(q)
Date html generated:
2020_05_20-PM-03_19_05
Last ObjectModification:
2020_04_06-PM-06_35_07
Theory : cubical!type!theory
Home
Index