Nuprl Lemma : path-type-ap-morph

[X,A,a,b,I,J,f,alpha,u:Top].  ((u alpha f) ~ λK,g. (u f ⋅ g))


Proof




Definitions occuring in Statement :  path-type: (Path_A b) cubical-type-ap-morph: (u f) nh-comp: g ⋅ f uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T path-type: (Path_A b) pathtype: Path(A) cubical-subset: {t:T | ∀I,alpha. psi[I; alpha; t]} all: x:A. B[x] top: Top cubical-fun: (A ⟶ B)
Lemmas referenced :  cubical_type_ap_morph_pair_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[X,A,a,b,I,J,f,alpha,u:Top].    ((u  alpha  f)  \msim{}  \mlambda{}K,g.  (u  K  f  \mcdot{}  g))



Date html generated: 2017_01_10-AM-08_53_13
Last ObjectModification: 2016_12_19-AM-11_03_12

Theory : cubical!type!theory


Home Index