Nuprl Lemma : path-type-ap-morph
∀[X,A,a,b,I,J,f,alpha,u:Top].  ((u alpha f) ~ λK,g. (u K f ⋅ g))
Proof
Definitions occuring in Statement : 
path-type: (Path_A a b)
, 
cubical-type-ap-morph: (u a f)
, 
nh-comp: g ⋅ f
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
path-type: (Path_A a b)
, 
pathtype: Path(A)
, 
cubical-subset: {t:T | ∀I,alpha. psi[I; alpha; t]}
, 
all: ∀x:A. B[x]
, 
top: Top
, 
cubical-fun: (A ⟶ B)
Lemmas referenced : 
cubical_type_ap_morph_pair_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[X,A,a,b,I,J,f,alpha,u:Top].    ((u  alpha  f)  \msim{}  \mlambda{}K,g.  (u  K  f  \mcdot{}  g))
Date html generated:
2017_01_10-AM-08_53_13
Last ObjectModification:
2016_12_19-AM-11_03_12
Theory : cubical!type!theory
Home
Index