Nuprl Lemma : p-csm+-term
∀[H,K,A,t,tau:Top].  (((t)p)tau+ ~ ((t)tau)p)
Proof
Definitions occuring in Statement : 
csm+: tau+
, 
cc-fst: p
, 
csm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
csm-ap-term: (t)s
, 
pscm-ap-term: (t)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
cc-fst: p
, 
psc-fst: p
, 
csm+: tau+
, 
pscm+: tau+
, 
csm-adjoin: (s;u)
, 
pscm-adjoin: (s;u)
, 
csm-comp: G o F
, 
pscm-comp: G o F
, 
cc-snd: q
, 
psc-snd: q
Lemmas referenced : 
p-pscm+-term
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalRule, 
sqequalReflexivity, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[H,K,A,t,tau:Top].    (((t)p)tau+  \msim{}  ((t)tau)p)
Date html generated:
2018_05_23-AM-08_53_02
Last ObjectModification:
2018_05_20-PM-06_01_59
Theory : cubical!type!theory
Home
Index