Nuprl Lemma : p-pscm+-term
∀[H,K,A,t,tau:Top].  (((t)p)tau+ ~ ((t)tau)p)
Proof
Definitions occuring in Statement : 
pscm+: tau+, 
psc-fst: p, 
pscm-ap-term: (t)s, 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
pscm-ap-term: (t)s, 
pscm-ap: (s)x, 
psc-fst: p, 
pi1: fst(t), 
pscm+: tau+, 
pscm-adjoin: (s;u), 
pscm-comp: G o F, 
compose: f o g, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
sqequalAxiom, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality
Latex:
\mforall{}[H,K,A,t,tau:Top].    (((t)p)tau+  \msim{}  ((t)tau)p)
Date html generated:
2018_05_23-AM-08_14_20
Last ObjectModification:
2018_05_20-PM-09_53_27
Theory : presheaf!models!of!type!theory
Home
Index