Step
*
1
1
of Lemma
csm-equiv-path1
.....assertion.....
1. G : CubicalSet{j}
2. A : {G ⊢ _}
3. B : {G ⊢ _}
4. f : {G ⊢ _:Equiv(A;B)}
5. H : CubicalSet{j}
6. s : H j⟶ G
7. ∀phi:{G.𝕀 ⊢ _:𝔽}. G.𝕀, phi ⊢ (A)p
8. ∀phi:{G.𝕀 ⊢ _:𝔽}. G.𝕀, phi ⊢ (B)p
9. ∀phi:{H.𝕀 ⊢ _:𝔽}. H.𝕀, phi ⊢ ((A)s)p
10. ∀phi:{H.𝕀 ⊢ _:𝔽}. H.𝕀, phi ⊢ ((B)s)p
11. (Glue [((q=0) ∨ (q=1)) ⊢→ ((if (q=0) then (A)p else (B)p);equiv-fun(cubical-equiv-by-cases(G;B;f)))] (B)p)s+
= H.𝕀 ⊢ Glue [(((q=0) ∨ (q=1)))s+ ⊢→ (((if (q=0) then (A)p else (B)p))
s+;(equiv-fun(cubical-equiv-by-cases(G;B;f)))s+)] ((B)p)s+
∈ {H.𝕀 ⊢ _}
⊢ H.𝕀 ⊢ Glue [(((q=0) ∨ (q=1)))s+ ⊢→ (((if (q=0) then (A)p else (B)p))
s+;(equiv-fun(cubical-equiv-by-cases(G;B;f)))s+)] ((B)p)s+
= H.𝕀 ⊢ Glue [((q=0) ∨ (q=1)) ⊢→ ((if (q=0) then ((A)s)p else ((B)s)
p);equiv-fun(cubical-equiv-by-cases(H;(B)s;(f)s)))] ((B)
s)p
∈ {H.𝕀 ⊢ _}
BY
{ ((Subst' ((B)p)s+ ~ ((B)s)p 0 THENA CsmUnfoldingComp)
THEN (Subst' (((q=0) ∨ (q=1)))s+ ~ ((q=0) ∨ (q=1)) 0
THENA ((RWW "csm-face-or csm-face-zero csm-face-one" 0 THENA Auto) THEN EqCD THEN Auto)
)
THEN (Subst' ((if (q=0) then (A)p else (B)p))s+ ~ (if (q=0) then ((A)s)p else ((B)s)p) 0
THENA ((RWW "csm-case-type csm-face-zero" 0 THENM CsmUnfolding) THEN Auto)
)
THEN (RWO "csm-equiv-fun" 0 THENA Auto)
THEN RepeatFor 2 (EqCDA)) }
1
.....subterm..... T:t
1:n
1. G : CubicalSet{j}
2. A : {G ⊢ _}
3. B : {G ⊢ _}
4. f : {G ⊢ _:Equiv(A;B)}
5. H : CubicalSet{j}
6. s : H j⟶ G
7. ∀phi:{G.𝕀 ⊢ _:𝔽}. G.𝕀, phi ⊢ (A)p
8. ∀phi:{G.𝕀 ⊢ _:𝔽}. G.𝕀, phi ⊢ (B)p
9. ∀phi:{H.𝕀 ⊢ _:𝔽}. H.𝕀, phi ⊢ ((A)s)p
10. ∀phi:{H.𝕀 ⊢ _:𝔽}. H.𝕀, phi ⊢ ((B)s)p
11. (Glue [((q=0) ∨ (q=1)) ⊢→ ((if (q=0) then (A)p else (B)p);equiv-fun(cubical-equiv-by-cases(G;B;f)))] (B)p)s+
= H.𝕀 ⊢ Glue [(((q=0) ∨ (q=1)))s+ ⊢→ (((if (q=0) then (A)p else (B)p))
s+;(equiv-fun(cubical-equiv-by-cases(G;B;f)))s+)] ((B)p)s+
∈ {H.𝕀 ⊢ _}
⊢ (cubical-equiv-by-cases(G;B;f))s+
= cubical-equiv-by-cases(H;(B)s;(f)s)
∈ {H.𝕀, ((q=0) ∨ (q=1)) ⊢ _:Equiv((if (q=0) then ((A)s)p else ((B)s)p);((B)s)p)}
Latex:
Latex:
.....assertion.....
1. G : CubicalSet\{j\}
2. A : \{G \mvdash{} \_\}
3. B : \{G \mvdash{} \_\}
4. f : \{G \mvdash{} \_:Equiv(A;B)\}
5. H : CubicalSet\{j\}
6. s : H j{}\mrightarrow{} G
7. \mforall{}phi:\{G.\mBbbI{} \mvdash{} \_:\mBbbF{}\}. G.\mBbbI{}, phi \mvdash{} (A)p
8. \mforall{}phi:\{G.\mBbbI{} \mvdash{} \_:\mBbbF{}\}. G.\mBbbI{}, phi \mvdash{} (B)p
9. \mforall{}phi:\{H.\mBbbI{} \mvdash{} \_:\mBbbF{}\}. H.\mBbbI{}, phi \mvdash{} ((A)s)p
10. \mforall{}phi:\{H.\mBbbI{} \mvdash{} \_:\mBbbF{}\}. H.\mBbbI{}, phi \mvdash{} ((B)s)p
11. (Glue [((q=0) \mvee{} (q=1)) \mvdash{}\mrightarrow{} ((if (q=0) then (A)p else (B)p);
equiv-fun(cubical-equiv-by-cases(G;B;f)))] (B)p)s+
= H.\mBbbI{} \mvdash{} Glue [(((q=0) \mvee{} (q=1)))s+ \mvdash{}\mrightarrow{} (((if (q=0) then (A)p else (B)p))
s+;(equiv-fun(cubical-equiv-by-cases(G;B;f)))s+)] ((B)p)s+
\mvdash{} H.\mBbbI{} \mvdash{} Glue [(((q=0) \mvee{} (q=1)))s+ \mvdash{}\mrightarrow{} (((if (q=0) then (A)p else (B)p))
s+;(equiv-fun(cubical-equiv-by-cases(G;B;f)))s+)] ((B)p)s+
= H.\mBbbI{} \mvdash{} Glue [((q=0) \mvee{} (q=1)) \mvdash{}\mrightarrow{} ((if (q=0) then ((A)s)
p else ((B)s)
p);equiv-fun(...))] ((B)s)p
By
Latex:
((Subst' ((B)p)s+ \msim{} ((B)s)p 0 THENA CsmUnfoldingComp)
THEN (Subst' (((q=0) \mvee{} (q=1)))s+ \msim{} ((q=0) \mvee{} (q=1)) 0
THENA ((RWW "csm-face-or csm-face-zero csm-face-one" 0 THENA Auto) THEN EqCD THEN Auto)
)
THEN (Subst' ((if (q=0) then (A)p else (B)p))s+ \msim{} (if (q=0) then ((A)s)p else ((B)s)p) 0
THENA ((RWW "csm-case-type csm-face-zero" 0 THENM CsmUnfolding) THEN Auto)
)
THEN (RWO "csm-equiv-fun" 0 THENA Auto)
THEN RepeatFor 2 (EqCDA))
Home
Index