Step * 1 of Lemma csm-pi_comp


1. [X] Top
2. [Y] Top
3. [tau] Top
4. [A] Top
5. [cA] Top
6. [cB] Top
⊢ (pi_comp(X;A;cA;cB))tau pi_comp(Y;(A)tau;(cA)tau;(cB)tau+)
BY
((RepUR ``pi_comp csm-comp-structure let`` THEN RepUR ``cubical-lambda`` 0)
   THEN RepeatFor 10 (EqCD)
   THEN RepeatFor ((EqCD THEN Try (Trivial)))) }

1
1. Top
2. Top
3. tau Top
4. Top
5. cA Top
6. cB Top
7. Base
8. sigma Base
9. phi Base
10. Base
11. a0 Base
12. Base
13. Base
14. Base
15. Base
16. u@0 Base
⊢ comp λH@0,sigma@0,phi,u,a0. (cB H@0 
                               (tau sigma p+;revfill(H.((A)tau sigma)
                                                            [1(𝕀)];λH@0,sigma@0,phi,u,a0. (cA H@0 
                                                                                           tau sigma p+ sigma@0 
                                                                                           phi 
                                                                                           
                                                                                           a0);q)) sigma@0 
                               phi 
                               
                               a0) [(phi)p ⟶ app((u)p+; revfill(H.((A)tau sigma)[1(𝕀)];λH@0,sigma@0,phi,u,a0. (cA H@0\000C 
                                                                                             tau sigma p+ sigma@0 
                                                                                             phi 
                                                                                             
                                                                                             a0);q))]
      app((a0)p; (revfill(H.((A)tau sigma)[1(𝕀)];λH@0,sigma@0,phi,u,a0. (cA H@0 tau sigma p+ sigma@0 phi a0);q\000C))[0(𝕀)]) 
comp λH@0,sigma@0,phi,u,a0. (cB H@0 
                               tau+ (sigma p+;revfill(H.(((A)tau)sigma)
                                                             [1(𝕀)];λH@0,sigma@0,phi,u,a0. (cA H@0 
                                                                                            tau sigma p+ sigma@0 
                                                                                            phi 
                                                                                            
                                                                                            a0);q)) sigma@0 
                               phi 
                               
                               a0) [(phi)p ⟶ app((u)p+; revfill(H.(((A)tau)sigma)[1(𝕀)];λH@0,sigma@0,phi,u,a0. (cA H@0 
                                                                                            tau sigma p+ sigma@0 
                                                                                            phi 
                                                                                            
                                                                                            a0);q))]
      app((a0)p; (revfill(H.(((A)tau)sigma)[1(𝕀)];λH@0,sigma@0,phi,u,a0. (cA H@0 tau sigma p+ sigma@0 phi a0);q)\000C)[0(𝕀)])


Latex:


Latex:

1.  [X]  :  Top
2.  [Y]  :  Top
3.  [tau]  :  Top
4.  [A]  :  Top
5.  [cA]  :  Top
6.  [cB]  :  Top
\mvdash{}  (pi\_comp(X;A;cA;cB))tau  \msim{}  pi\_comp(Y;(A)tau;(cA)tau;(cB)tau+)


By


Latex:
((RepUR  ``pi\_comp  csm-comp-structure  let``  0  THEN  RepUR  ``cubical-lambda``  0)
  THEN  RepeatFor  10  (EqCD)
  THEN  RepeatFor  2  ((EqCD  THEN  Try  (Trivial))))




Home Index