Nuprl Lemma : csm-pi_comp

[X,Y,tau,A,cA,cB:Top].  ((pi_comp(X;A;cA;cB))tau pi_comp(Y;(A)tau;(cA)tau;(cB)tau+))


Proof




Definitions occuring in Statement :  pi_comp: pi_comp(X;A;cA;cB) csm-comp-structure: (cA)tau csm+: tau+ cube-context-adjoin: X.A csm-ap-type: (AF)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-comp-structure: (cA)tau pi_comp: pi_comp(X;A;cA;cB) let: let cubical-lambda: b) comp_term: comp cA [phi ⟶ u] a0 csm-ap-type: (AF)s so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a csm-ap: (s)x csm-comp: F compose: g csm-id-adjoin: [u] csm-adjoin: (s;u) csm-id: 1(X) interval-1: 1(𝕀) dM1: 1 lattice-1: 1 record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt fset-singleton: {x} cons: [a b] empty-fset: {} nil: [] it: cc-fst: p csm+: tau+ cc-snd: q all: x:A. B[x] implies:  Q prop: pi2: snd(t) pi1: fst(t) csm-ap-term: (t)s revfill: revfill(Gamma;cA;a1) rev_fill_term: rev_fill_term(Gamma;cA;phi;u;a1)
Lemmas referenced :  top_wf lifting-strict-spread strict4-spread equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation because_Cache cut introduction extract_by_obid hypothesis sqequalRule sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination lambdaFormation equalityTransitivity equalitySymmetry hypothesisEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[X,Y,tau,A,cA,cB:Top].    ((pi\_comp(X;A;cA;cB))tau  \msim{}  pi\_comp(Y;(A)tau;(cA)tau;(cB)tau+))



Date html generated: 2017_10_05-AM-07_15_01
Last ObjectModification: 2017_07_28-AM-10_48_06

Theory : cubical!type!theory


Home Index