Step * of Lemma csm-singleton-center

No Annotations
[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}]. ∀[H:j⊢]. ∀[s:H j⟶ X].
  ((singleton-center(X;a))s singleton-center(H;(a)s) ∈ {H ⊢ _:Singleton((a)s)})
BY
(Auto
   THEN Unfold `singleton-center` 0
   THEN (RWO "csm-cubical-pair" THENA Auto)
   THEN Unfold `singleton-type` 0
   THEN EqCDA) }

1
.....subterm..... T:t
2:n
1. CubicalSet{j}
2. {X ⊢ _}
3. {X ⊢ _:A}
4. CubicalSet{j}
5. j⟶ X
⊢ (refl(a))s refl((a)s) ∈ {H ⊢ _:((Path_((A)s)p ((a)s)p q))[(a)s]}


Latex:


Latex:
No  Annotations
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  X].
    ((singleton-center(X;a))s  =  singleton-center(H;(a)s))


By


Latex:
(Auto
  THEN  Unfold  `singleton-center`  0
  THEN  (RWO  "csm-cubical-pair"  0  THENA  Auto)
  THEN  Unfold  `singleton-type`  0
  THEN  EqCDA)




Home Index