Nuprl Lemma : csm-singleton-center

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}]. ∀[H:j⊢]. ∀[s:H j⟶ X].
  ((singleton-center(X;a))s singleton-center(H;(a)s) ∈ {H ⊢ _:Singleton((a)s)})


Proof




Definitions occuring in Statement :  singleton-center: singleton-center(X;a) singleton-type: Singleton(a) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T singleton-center: singleton-center(X;a) singleton-type: Singleton(a) squash: T prop: subtype_rel: A ⊆B true: True all: x:A. B[x] uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cubical-type: {X ⊢ _} csm-ap-type: (AF)s csm-id: 1(X) csm-ap: (s)x
Lemmas referenced :  csm-cubical-pair cubical-pair_wf squash_wf true_wf cubical-term_wf csm-ap-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-id-adjoin_wf cubical-type_wf path-type_wf cc-fst_wf csm-ap-term_wf cc-snd_wf cube_set_map_wf cubical_set_wf csm-cubical-refl equal_wf istype-universe csm-path-type subtype_rel_self iff_weakening_equal csm_id_adjoin_fst_type_lemma csm_id_adjoin_fst_term_lemma cc_snd_csm_id_adjoin_lemma csm-id_wf csm-ap-id-term subset-cubical-term2 sub_cubical_set_self csm-ap-id-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis applyEquality lambdaEquality_alt imageElimination hypothesisEquality equalityTransitivity equalitySymmetry universeIsType instantiate because_Cache natural_numberEquality imageMemberEquality baseClosed isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType hyp_replacement universeEquality dependent_functionElimination independent_isectElimination productElimination independent_functionElimination setElimination rename

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  X].
    ((singleton-center(X;a))s  =  singleton-center(H;(a)s))



Date html generated: 2020_05_20-PM-03_29_37
Last ObjectModification: 2020_04_06-PM-06_51_35

Theory : cubical!type!theory


Home Index