Nuprl Lemma : csm-subset-subtype
∀[A,B,Y,Z:j⊢].  (Y j⟶ A ⊆r Z j⟶ B) supposing (sub_cubical_set{j:l}(A; B) and sub_cubical_set{j:l}(Z; Y))
Proof
Definitions occuring in Statement : 
sub_cubical_set: Y ⊆ X
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
sub_cubical_set: Y ⊆ X
, 
sub_ps_context: Y ⊆ X
, 
cube_set_map: A ⟶ B
, 
csm-id: 1(X)
, 
pscm-id: 1(X)
Lemmas referenced : 
pscm-subset-subtype, 
cube-cat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule
Latex:
\mforall{}[A,B,Y,Z:j\mvdash{}].
    (Y  j{}\mrightarrow{}  A  \msubseteq{}r  Z  j{}\mrightarrow{}  B)  supposing  (sub\_cubical\_set\{j:l\}(A;  B)  and  sub\_cubical\_set\{j:l\}(Z;  Y))
Date html generated:
2020_05_20-PM-02_34_12
Last ObjectModification:
2020_04_03-PM-08_44_38
Theory : cubical!type!theory
Home
Index