Nuprl Lemma : csm-subset-subtype

[A,B,Y,Z:j⊢].  (Y j⟶ A ⊆j⟶ B) supposing (sub_cubical_set{j:l}(A; B) and sub_cubical_set{j:l}(Z; Y))


Proof




Definitions occuring in Statement :  sub_cubical_set: Y ⊆ X cube_set_map: A ⟶ B cubical_set: CubicalSet uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet sub_cubical_set: Y ⊆ X sub_ps_context: Y ⊆ X cube_set_map: A ⟶ B csm-id: 1(X) pscm-id: 1(X)
Lemmas referenced :  pscm-subset-subtype cube-cat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule

Latex:
\mforall{}[A,B,Y,Z:j\mvdash{}].
    (Y  j{}\mrightarrow{}  A  \msubseteq{}r  Z  j{}\mrightarrow{}  B)  supposing  (sub\_cubical\_set\{j:l\}(A;  B)  and  sub\_cubical\_set\{j:l\}(Z;  Y))



Date html generated: 2020_05_20-PM-02_34_12
Last ObjectModification: 2020_04_03-PM-08_44_38

Theory : cubical!type!theory


Home Index