Nuprl Lemma : ctt-type-comp_wf

[X:⊢''']. ∀[T:cttType(X)].  (comp(T) ∈ Comp(X;level(T);type(T)))


Proof




Definitions occuring in Statement :  ctt-type-comp: comp(T) ctt-type-type: type(T) ctt-type-level: level(T) ctt-type-meaning: cttType(X) ctt-level-comp: Comp(X;lvl;T) cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ctt-type-meaning: cttType(X) ctt-type-comp: comp(T) ctt-type-type: type(T) ctt-type-level: level(T) pi1: fst(t) pi2: snd(t)
Lemmas referenced :  ctt-type-meaning_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis universeIsType introduction extract_by_obid isectElimination instantiate

Latex:
\mforall{}[X:\mvdash{}'''].  \mforall{}[T:cttType(X)].    (comp(T)  \mmember{}  Comp(X;level(T);type(T)))



Date html generated: 2020_05_20-PM-07_58_21
Last ObjectModification: 2020_05_07-AM-11_38_11

Theory : cubical!type!theory


Home Index