Nuprl Lemma : cubical-fun-family-comp

X,Delta:j⊢. ∀s:Delta j⟶ X. ∀I,J:fset(ℕ). ∀f:J ⟶ I. ∀a:Delta(I). ∀A,B:{X ⊢ _}.
w:cubical-fun-family(X; A; B; I; (s)a).
  K,g. (w f ⋅ g) ∈ cubical-fun-family(X; A; B; J; (s)f(a)))


Proof




Definitions occuring in Statement :  cubical-fun-family: cubical-fun-family(X; A; B; I; a) cubical-type: {X ⊢ _} csm-ap: (s)x cube_set_map: A ⟶ B cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: all: x:A. B[x] member: t ∈ T apply: a lambda: λx.A[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B cube-cat: CubeCat I_cube: A(I) I_set: A(I) uall: [x:A]. B[x] cubical-fun-family: cubical-fun-family(X; A; B; I; a) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) csm-ap: (s)x pscm-ap: (s)x cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f)
Lemmas referenced :  presheaf-fun-family-comp cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma cubical-type-sq-presheaf-type cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule Error :memTop,  isectElimination

Latex:
\mforall{}X,Delta:j\mvdash{}.  \mforall{}s:Delta  j{}\mrightarrow{}  X.  \mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}a:Delta(I).  \mforall{}A,B:\{X  \mvdash{}  \_\}.
\mforall{}w:cubical-fun-family(X;  A;  B;  I;  (s)a).
    (\mlambda{}K,g.  (w  K  f  \mcdot{}  g)  \mmember{}  cubical-fun-family(X;  A;  B;  J;  (s)f(a)))



Date html generated: 2020_05_20-PM-01_59_46
Last ObjectModification: 2020_04_03-PM-08_33_02

Theory : cubical!type!theory


Home Index