Nuprl Lemma : cubical-fun-family-comp
∀X,Delta:j⊢. ∀s:Delta j⟶ X. ∀I,J:fset(ℕ). ∀f:J ⟶ I. ∀a:Delta(I). ∀A,B:{X ⊢ _}.
∀w:cubical-fun-family(X; A; B; I; (s)a).
  (λK,g. (w K f ⋅ g) ∈ cubical-fun-family(X; A; B; J; (s)f(a)))
Proof
Definitions occuring in Statement : 
cubical-fun-family: cubical-fun-family(X; A; B; I; a)
, 
cubical-type: {X ⊢ _}
, 
csm-ap: (s)x
, 
cube_set_map: A ⟶ B
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
fset: fset(T)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube_set_map: A ⟶ B
, 
cube-cat: CubeCat
, 
I_cube: A(I)
, 
I_set: A(I)
, 
uall: ∀[x:A]. B[x]
, 
cubical-fun-family: cubical-fun-family(X; A; B; I; a)
, 
presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a)
, 
cubical-type-at: A(a)
, 
presheaf-type-at: A(a)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
cubical-type-ap-morph: (u a f)
, 
presheaf-type-ap-morph: (u a f)
Lemmas referenced : 
presheaf-fun-family-comp, 
cube-cat_wf, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cubical-type-sq-presheaf-type, 
cat_comp_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop, 
isectElimination
Latex:
\mforall{}X,Delta:j\mvdash{}.  \mforall{}s:Delta  j{}\mrightarrow{}  X.  \mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}a:Delta(I).  \mforall{}A,B:\{X  \mvdash{}  \_\}.
\mforall{}w:cubical-fun-family(X;  A;  B;  I;  (s)a).
    (\mlambda{}K,g.  (w  K  f  \mcdot{}  g)  \mmember{}  cubical-fun-family(X;  A;  B;  J;  (s)f(a)))
Date html generated:
2020_05_20-PM-01_59_46
Last ObjectModification:
2020_04_03-PM-08_33_02
Theory : cubical!type!theory
Home
Index