Step
*
3
of Lemma
cubical-term-subtype-cubical-subset
.....wf.....
1. I : fset(β)
2. psi : π½(I)
3. T : {formal-cube(I) β’ _}
4. x : I@0:fset(β) βΆ a:formal-cube(I)(I@0) βΆ T(a)
5. βI@0,J:fset(β). βf:J βΆ I@0. βa:formal-cube(I)(I@0). ((x I@0 a a f) = (x J f(a)) β T(f(a)))
6. u : I@0:fset(β) βΆ a:I,psi(I@0) βΆ T(a)
β’ βI@0,J:fset(β). βf:J βΆ I@0. βa:I,psi(I@0). ((u I@0 a a f) = (u J f(a)) β T(f(a))) β Type
BY
{ ((Assert β{formal-cube(I) β’ _} βr {I,psi β’ _}ββ
THENA Auto)
THEN MoveToConcl (-2)
THEN (GenConcl βT = X β {I,psi β’ _}ββ
THENA Auto)
THEN Thin (-1)
THEN MoveToConcl (-1)
THEN (GenConcl βI,psi = Y β CubicalSetββ
THENA Auto)
THEN All Thin
THEN Auto) }
Latex:
Latex:
.....wf.....
1. I : fset(\mBbbN{})
2. psi : \mBbbF{}(I)
3. T : \{formal-cube(I) \mvdash{} \_\}
4. x : I@0:fset(\mBbbN{}) {}\mrightarrow{} a:formal-cube(I)(I@0) {}\mrightarrow{} T(a)
5. \mforall{}I@0,J:fset(\mBbbN{}). \mforall{}f:J {}\mrightarrow{} I@0. \mforall{}a:formal-cube(I)(I@0). ((x I@0 a a f) = (x J f(a)))
6. u : I@0:fset(\mBbbN{}) {}\mrightarrow{} a:I,psi(I@0) {}\mrightarrow{} T(a)
\mvdash{} \mforall{}I@0,J:fset(\mBbbN{}). \mforall{}f:J {}\mrightarrow{} I@0. \mforall{}a:I,psi(I@0). ((u I@0 a a f) = (u J f(a))) \mmember{} Type
By
Latex:
((Assert \mkleeneopen{}\{formal-cube(I) \mvdash{} \_\} \msubseteq{}r \{I,psi \mvdash{} \_\}\mkleeneclose{}\mcdot{} THENA Auto)
THEN MoveToConcl (-2)
THEN (GenConcl \mkleeneopen{}T = X\mkleeneclose{}\mcdot{} THENA Auto)
THEN Thin (-1)
THEN MoveToConcl (-1)
THEN (GenConcl \mkleeneopen{}I,psi = Y\mkleeneclose{}\mcdot{} THENA Auto)
THEN All Thin
THEN Auto)
Home
Index