Nuprl Lemma : cubical-term-subtype-cubical-subset
∀[I:fset(ℕ)]. ∀[psi:𝔽(I)]. ∀[T:{formal-cube(I) ⊢ _}].  ({formal-cube(I) ⊢ _:T} ⊆r {I,psi ⊢ _:T})
Proof
Definitions occuring in Statement : 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical-subset: I,psi
, 
face-presheaf: 𝔽
, 
formal-cube: formal-cube(I)
, 
I_cube: A(I)
, 
fset: fset(T)
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
cubical-term: {X ⊢ _:A}
, 
top: Top
, 
formal-cube: formal-cube(I)
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
names-hom: I ⟶ J
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
so_apply: x[s]
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
and: P ∧ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
DeMorgan-algebra: DeMorganAlgebra
, 
guard: {T}
, 
implies: P 
⇒ Q
Lemmas referenced : 
cubical-term_wf, 
formal-cube_wf, 
cubical-type_wf, 
I_cube_wf, 
face-presheaf_wf, 
fset_wf, 
nat_wf, 
cubical-subset-I_cube, 
I_cube_pair_redex_lemma, 
subtype_rel_dep_function, 
names-hom_wf, 
cubical-type-at_wf, 
subtype_rel_self, 
names_wf, 
lattice-point_wf, 
dM_wf, 
name-morph-satisfies_wf, 
fset-all_wf, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
assert_wf, 
fset-antichain_wf, 
union-deq_wf, 
names-deq_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
set_wf, 
cube_set_restriction_pair_lemma, 
cubical-subset-restriction, 
cubical-type-subtype-cubical-subset, 
cubical-subset_wf, 
cubical_set_wf, 
all_wf, 
cube-set-restriction_wf, 
cubical-type-ap-morph_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
dependent_set_memberEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
functionExtensionality, 
applyEquality, 
functionEquality, 
because_Cache, 
setEquality, 
productEquality, 
lambdaFormation, 
unionEquality, 
independent_isectElimination, 
instantiate, 
cumulativity, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[psi:\mBbbF{}(I)].  \mforall{}[T:\{formal-cube(I)  \mvdash{}  \_\}].    (\{formal-cube(I)  \mvdash{}  \_:T\}  \msubseteq{}r  \{I,psi  \mvdash{}  \_:T\})
Date html generated:
2017_10_05-AM-06_42_28
Last ObjectModification:
2017_07_28-AM-10_33_06
Theory : cubical!type!theory
Home
Index