Nuprl Lemma : cubical-term-subtype-cubical-subset

[I:fset(ℕ)]. ∀[psi:𝔽(I)]. ∀[T:{formal-cube(I) ⊢ _}].  ({formal-cube(I) ⊢ _:T} ⊆{I,psi ⊢ _:T})


Proof




Definitions occuring in Statement :  cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical-subset: I,psi face-presheaf: 𝔽 formal-cube: formal-cube(I) I_cube: A(I) fset: fset(T) nat: subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T cubical-term: {X ⊢ _:A} top: Top formal-cube: formal-cube(I) all: x:A. B[x] so_lambda: λ2x.t[x] names-hom: I ⟶ J I_cube: A(I) functor-ob: ob(F) pi1: fst(t) so_apply: x[s] face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt and: P ∧ Q prop: uimplies: supposing a DeMorgan-algebra: DeMorganAlgebra guard: {T} implies:  Q
Lemmas referenced :  cubical-term_wf formal-cube_wf cubical-type_wf I_cube_wf face-presheaf_wf fset_wf nat_wf cubical-subset-I_cube I_cube_pair_redex_lemma subtype_rel_dep_function names-hom_wf cubical-type-at_wf subtype_rel_self names_wf lattice-point_wf dM_wf name-morph-satisfies_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf assert_wf fset-antichain_wf union-deq_wf names-deq_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf set_wf cube_set_restriction_pair_lemma cubical-subset-restriction cubical-type-subtype-cubical-subset cubical-subset_wf cubical_set_wf all_wf cube-set-restriction_wf cubical-type-ap-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaEquality sqequalHypSubstitution setElimination thin rename cut dependent_set_memberEquality hypothesis introduction extract_by_obid isectElimination hypothesisEquality sqequalRule isect_memberEquality voidElimination voidEquality dependent_functionElimination functionExtensionality applyEquality functionEquality because_Cache setEquality productEquality lambdaFormation unionEquality independent_isectElimination instantiate cumulativity universeEquality equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[psi:\mBbbF{}(I)].  \mforall{}[T:\{formal-cube(I)  \mvdash{}  \_\}].    (\{formal-cube(I)  \mvdash{}  \_:T\}  \msubseteq{}r  \{I,psi  \mvdash{}  \_:T\})



Date html generated: 2017_10_05-AM-06_42_28
Last ObjectModification: 2017_07_28-AM-10_33_06

Theory : cubical!type!theory


Home Index