Nuprl Lemma : cubical-type-iso-inverse2

[X:j⊢]. ((cubical-type-iso(X) cubical-type-rev-iso(X)) x.x) ∈ ({X ⊢ _} ⟶ {X ⊢ _}))


Proof




Definitions occuring in Statement :  cubical-type-rev-iso: cubical-type-rev-iso(X) cubical-type-iso: cubical-type-iso(X) cubical-type: {X ⊢ _} cubical_set: CubicalSet compose: g uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cubical-type-iso: cubical-type-iso(X) presheaf-type-iso: presheaf-type-iso(X) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-rev-iso: cubical-type-rev-iso(X) presheaf-type-rev-iso: presheaf-type-rev-iso(X)
Lemmas referenced :  presheaf-type-iso-inverse2 cube-cat_wf cubical-type-sq-presheaf-type
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  ((cubical-type-iso(X)  o  cubical-type-rev-iso(X))  =  (\mlambda{}x.x))



Date html generated: 2020_05_20-PM-01_47_00
Last ObjectModification: 2020_04_03-PM-07_58_29

Theory : cubical!type!theory


Home Index