Step * 2 1 of Lemma dM-hom-basis


1. fset(ℕ)
2. fset(fset(names(I) names(I)))
3. ↑fset-antichain(union-deq(names(I);names(I);NamesDeq;NamesDeq);x)
4. \/(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ Point(dM(I))
5. BoundedLattice
6. eq EqDecider(Point(l))
7. Hom(dM(I);l)
8. (h x) (h \/(λs./\(λx.free-dl-inc(x)"(s))"(x))) ∈ Point(l)
9. h ∈ Hom(free-DeMorgan-lattice(names(I);NamesDeq);l)
10. ∀[s:fset(Point(free-DeMorgan-lattice(names(I);NamesDeq)))]. ((h \/(s)) \/(h"(s)) ∈ Point(l))
11. ∀[s:fset(Point(free-DeMorgan-lattice(names(I);NamesDeq)))]. ((h /\(s)) /\(h"(s)) ∈ Point(l))
⊢ \/(λs./\(λx.(h free-dl-inc(x))"(s))"(x)) (h \/(λs./\(λx.free-dl-inc(x)"(s))"(x))) ∈ Point(l)
BY
Assert ⌜∀x,y:Point(l).  Dec(x y ∈ Point(l))⌝⋅ }

1
.....assertion..... 
1. fset(ℕ)
2. fset(fset(names(I) names(I)))
3. ↑fset-antichain(union-deq(names(I);names(I);NamesDeq;NamesDeq);x)
4. \/(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ Point(dM(I))
5. BoundedLattice
6. eq EqDecider(Point(l))
7. Hom(dM(I);l)
8. (h x) (h \/(λs./\(λx.free-dl-inc(x)"(s))"(x))) ∈ Point(l)
9. h ∈ Hom(free-DeMorgan-lattice(names(I);NamesDeq);l)
10. ∀[s:fset(Point(free-DeMorgan-lattice(names(I);NamesDeq)))]. ((h \/(s)) \/(h"(s)) ∈ Point(l))
11. ∀[s:fset(Point(free-DeMorgan-lattice(names(I);NamesDeq)))]. ((h /\(s)) /\(h"(s)) ∈ Point(l))
⊢ ∀x,y:Point(l).  Dec(x y ∈ Point(l))

2
1. fset(ℕ)
2. fset(fset(names(I) names(I)))
3. ↑fset-antichain(union-deq(names(I);names(I);NamesDeq;NamesDeq);x)
4. \/(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ Point(dM(I))
5. BoundedLattice
6. eq EqDecider(Point(l))
7. Hom(dM(I);l)
8. (h x) (h \/(λs./\(λx.free-dl-inc(x)"(s))"(x))) ∈ Point(l)
9. h ∈ Hom(free-DeMorgan-lattice(names(I);NamesDeq);l)
10. ∀[s:fset(Point(free-DeMorgan-lattice(names(I);NamesDeq)))]. ((h \/(s)) \/(h"(s)) ∈ Point(l))
11. ∀[s:fset(Point(free-DeMorgan-lattice(names(I);NamesDeq)))]. ((h /\(s)) /\(h"(s)) ∈ Point(l))
12. ∀x,y:Point(l).  Dec(x y ∈ Point(l))
⊢ \/(λs./\(λx.(h free-dl-inc(x))"(s))"(x)) (h \/(λs./\(λx.free-dl-inc(x)"(s))"(x))) ∈ Point(l)


Latex:


Latex:

1.  I  :  fset(\mBbbN{})
2.  x  :  fset(fset(names(I)  +  names(I)))
3.  \muparrow{}fset-antichain(union-deq(names(I);names(I);NamesDeq;NamesDeq);x)
4.  x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(x))
5.  l  :  BoundedLattice
6.  eq  :  EqDecider(Point(l))
7.  h  :  Hom(dM(I);l)
8.  (h  x)  =  (h  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(x)))
9.  h  \mmember{}  Hom(free-DeMorgan-lattice(names(I);NamesDeq);l)
10.  \mforall{}[s:fset(Point(free-DeMorgan-lattice(names(I);NamesDeq)))].  ((h  \mbackslash{}/(s))  =  \mbackslash{}/(h"(s)))
11.  \mforall{}[s:fset(Point(free-DeMorgan-lattice(names(I);NamesDeq)))].  ((h  /\mbackslash{}(s))  =  /\mbackslash{}(h"(s)))
\mvdash{}  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.(h  free-dl-inc(x))"(s))"(x))  =  (h  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(x)))


By


Latex:
Assert  \mkleeneopen{}\mforall{}x,y:Point(l).    Dec(x  =  y)\mkleeneclose{}\mcdot{}




Home Index