Step * of Lemma dM-lift-s

[I,J:fset(ℕ)].  ∀[x:Point(dM(I))]. ((dM-lift(J;I;s) x) x ∈ Point(dM(J))) supposing I ⊆ J
BY
(Intros THEN InstLemma `dM-lift-is-id2` [⌜I⌝;⌜I⌝;⌜J⌝;⌜s⌝;⌜x⌝]⋅ THEN Auto) }

1
.....wf..... 
1. fset(ℕ)
2. fset(ℕ)
3. I ⊆ J
4. Point(dM(I))
⊢ I ∈ {J:fset(ℕ)| I ⊆ J} 


Latex:


Latex:
\mforall{}[I,J:fset(\mBbbN{})].    \mforall{}[x:Point(dM(I))].  ((dM-lift(J;I;s)  x)  =  x)  supposing  I  \msubseteq{}  J


By


Latex:
(Intros  THEN  InstLemma  `dM-lift-is-id2`  [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}J\mkleeneclose{};\mkleeneopen{}s\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{}  THEN  Auto)




Home Index