Nuprl Lemma : dM-lift-s

[I,J:fset(ℕ)].  ∀[x:Point(dM(I))]. ((dM-lift(J;I;s) x) x ∈ Point(dM(J))) supposing I ⊆ J


Proof




Definitions occuring in Statement :  nc-s: s dM-lift: dM-lift(I;J;f) dM: dM(I) lattice-point: Point(l) f-subset: xs ⊆ ys fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B prop: all: x:A. B[x] nc-s: s dM_inc: <x> dminc: <i> free-dl-inc: free-dl-inc(x) fset-singleton: {x} cons: [a b] DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} so_apply: x[s] nat: f-subset: xs ⊆ ys implies:  Q
Lemmas referenced :  dM-lift-is-id2 f-subset_wf nat_wf int-deq_wf nc-s_wf dM_inc_wf names-subtype names_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf fset-member_witness fset-member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality hypothesis applyEquality because_Cache sqequalRule independent_isectElimination lambdaFormation instantiate lambdaEquality productEquality cumulativity universeEquality intEquality natural_numberEquality introduction independent_functionElimination

Latex:
\mforall{}[I,J:fset(\mBbbN{})].    \mforall{}[x:Point(dM(I))].  ((dM-lift(J;I;s)  x)  =  x)  supposing  I  \msubseteq{}  J



Date html generated: 2016_05_18-PM-00_00_34
Last ObjectModification: 2015_12_28-PM-03_06_15

Theory : cubical!type!theory


Home Index