Step
*
1
of Lemma
dM-to-FL-is-hom
1. I : fset(ℕ)
⊢ λz.dM-to-FL(I;z) ∈ Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I))
BY
{ (Unfold `dM-to-FL` 0
   THEN (InstLemma `lattice-extend-is-hom` [⌜names(I) + names(I)⌝;⌜union-deq(names(I);names(I);NamesDeq;NamesDeq)⌝;
         ⌜face_lattice(I)⌝;⌜face_lattice-deq()⌝;⌜λx.case x of inl(a) => (a=1) | inr(a) => (a=0)⌝]⋅
         THENA Auto
         )
   THEN Fold `free-DeMorgan-lattice` (-1)
   THEN Auto) }
Latex:
Latex:
1.  I  :  fset(\mBbbN{})
\mvdash{}  \mlambda{}z.dM-to-FL(I;z)  \mmember{}  Hom(free-DeMorgan-lattice(names(I);NamesDeq);face\_lattice(I))
By
Latex:
(Unfold  `dM-to-FL`  0
  THEN  (InstLemma  `lattice-extend-is-hom`  [\mkleeneopen{}names(I)  +  names(I)\mkleeneclose{};
              \mkleeneopen{}union-deq(names(I);names(I);NamesDeq;NamesDeq)\mkleeneclose{};\mkleeneopen{}face\_lattice(I)\mkleeneclose{};\mkleeneopen{}face\_lattice-deq()\mkleeneclose{};
              \mkleeneopen{}\mlambda{}x.case  x  of  inl(a)  =>  (a=1)  |  inr(a)  =>  (a=0)\mkleeneclose{}]\mcdot{}
              THENA  Auto
              )
  THEN  Fold  `free-DeMorgan-lattice`  (-1)
  THEN  Auto)
Home
Index