Step * of Lemma dM-to-FL-neg-is-1

[I:fset(ℕ)]
  ∀x:Point(free-DeMorgan-lattice(names(I);NamesDeq))
    dM-to-FL(I;x) 0 ∈ Point(face_lattice(I)) supposing dM-to-FL(I;¬(x)) 1 ∈ Point(face_lattice(I))
BY
(InstLemma `dM-to-FL-neg2` [] THEN RepeatFor (ParallelLast')) }

1
1. [I] fset(ℕ)
2. Point(free-DeMorgan-lattice(names(I);NamesDeq))
3. dM-to-FL(I;¬(x)) ∧ dM-to-FL(I;x) 0 ∈ Point(face_lattice(I))
⊢ dM-to-FL(I;x) 0 ∈ Point(face_lattice(I)) supposing dM-to-FL(I;¬(x)) 1 ∈ Point(face_lattice(I))


Latex:


Latex:
\mforall{}[I:fset(\mBbbN{})]
    \mforall{}x:Point(free-DeMorgan-lattice(names(I);NamesDeq))
        dM-to-FL(I;x)  =  0  supposing  dM-to-FL(I;\mneg{}(x))  =  1


By


Latex:
(InstLemma  `dM-to-FL-neg2`  []  THEN  RepeatFor  2  (ParallelLast'))




Home Index