Step
*
1
of Lemma
dM-to-FL-neg-is-1
1. [I] : fset(ℕ)
2. x : Point(free-DeMorgan-lattice(names(I);NamesDeq))
3. dM-to-FL(I;¬(x)) ∧ dM-to-FL(I;x) = 0 ∈ Point(face_lattice(I))
⊢ dM-to-FL(I;x) = 0 ∈ Point(face_lattice(I)) supposing dM-to-FL(I;¬(x)) = 1 ∈ Point(face_lattice(I))
BY
{ (D 0 THENA Auto) }
1
1. I : fset(ℕ)
2. x : Point(free-DeMorgan-lattice(names(I);NamesDeq))
3. dM-to-FL(I;¬(x)) ∧ dM-to-FL(I;x) = 0 ∈ Point(face_lattice(I))
4. dM-to-FL(I;¬(x)) = 1 ∈ Point(face_lattice(I))
⊢ dM-to-FL(I;x) = 0 ∈ Point(face_lattice(I))
Latex:
Latex:
1.  [I]  :  fset(\mBbbN{})
2.  x  :  Point(free-DeMorgan-lattice(names(I);NamesDeq))
3.  dM-to-FL(I;\mneg{}(x))  \mwedge{}  dM-to-FL(I;x)  =  0
\mvdash{}  dM-to-FL(I;x)  =  0  supposing  dM-to-FL(I;\mneg{}(x))  =  1
By
Latex:
(D  0  THENA  Auto)
Home
Index