Step
*
1
of Lemma
dM-to-FL-neg
1. I : fset(ℕ)
2. ∀a,b:Point(free-DeMorgan-lattice(names(I);NamesDeq)). Dec(a = b ∈ Point(free-DeMorgan-lattice(names(I);NamesDeq)))
3. deq-fset(deq-fset(union-deq(names(I);names(I);NamesDeq;NamesDeq)))
∈ EqDecider(Point(free-DeMorgan-lattice(names(I);NamesDeq)))
4. λs./\(λx.free-dl-inc(x)"(s)) ∈ fset(names(I) + names(I)) ⟶ Point(free-DeMorgan-lattice(names(I);NamesDeq))
5. ∀v:fset(fset(names(I) + names(I)))
(λs./\(λx.free-dl-inc(x)"(s))"(v) ∈ fset(Point(free-DeMorgan-lattice(names(I);NamesDeq))))
⊢ ∀x:Point(free-DeMorgan-lattice(names(I);NamesDeq)). (dM-to-FL(I;x) ∧ dM-to-FL(I;¬(x)) = 0 ∈ Point(face_lattice(I)))
BY
{ ((D 0 THENA Auto) THEN (InstLemma `dM-basis` [⌜I⌝;⌜x⌝]⋅ THENA Auto) THEN HypSubst' (-1) 0 THEN Auto) }
1
1. I : fset(ℕ)
2. ∀a,b:Point(free-DeMorgan-lattice(names(I);NamesDeq)). Dec(a = b ∈ Point(free-DeMorgan-lattice(names(I);NamesDeq)))
3. deq-fset(deq-fset(union-deq(names(I);names(I);NamesDeq;NamesDeq)))
∈ EqDecider(Point(free-DeMorgan-lattice(names(I);NamesDeq)))
4. λs./\(λx.free-dl-inc(x)"(s)) ∈ fset(names(I) + names(I)) ⟶ Point(free-DeMorgan-lattice(names(I);NamesDeq))
5. ∀v:fset(fset(names(I) + names(I)))
(λs./\(λx.free-dl-inc(x)"(s))"(v) ∈ fset(Point(free-DeMorgan-lattice(names(I);NamesDeq))))
6. x : Point(free-DeMorgan-lattice(names(I);NamesDeq))
7. x = \/(λs./\(λx.free-dl-inc(x)"(s))"(x)) ∈ Point(dM(I))
⊢ dM-to-FL(I;\/(λs./\(λx.free-dl-inc(x)"(s))"(x))) ∧ dM-to-FL(I;¬(\/(λs./\(λx.free-dl-inc(x)"(s))"(x))))
= 0
∈ Point(face_lattice(I))
Latex:
Latex:
1. I : fset(\mBbbN{})
2. \mforall{}a,b:Point(free-DeMorgan-lattice(names(I);NamesDeq)). Dec(a = b)
3. deq-fset(deq-fset(union-deq(names(I);names(I);NamesDeq;NamesDeq)))
\mmember{} EqDecider(Point(free-DeMorgan-lattice(names(I);NamesDeq)))
4. \mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s)) \mmember{} fset(names(I) + names(I))
{}\mrightarrow{} Point(free-DeMorgan-lattice(names(I);NamesDeq))
5. \mforall{}v:fset(fset(names(I) + names(I)))
(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dl-inc(x)"(s))"(v) \mmember{} fset(Point(free-DeMorgan-lattice(names(I);NamesDeq))))
\mvdash{} \mforall{}x:Point(free-DeMorgan-lattice(names(I);NamesDeq)). (dM-to-FL(I;x) \mwedge{} dM-to-FL(I;\mneg{}(x)) = 0)
By
Latex:
((D 0 THENA Auto) THEN (InstLemma `dM-basis` [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THENA Auto) THEN HypSubst' (-1) 0 THEN Auto)
Home
Index