Step * 1 of Lemma dM-to-FL-unique


1. fset(ℕ)
2. Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I))
3. ∀i:names(I). (((g <i>(i=1) ∈ Point(face_lattice(I))) ∧ ((g <1-i>(i=0) ∈ Point(face_lattice(I))))
4. Point(dM(I))
⊢ dM-to-FL(I;x) (g x) ∈ Point(face_lattice(I))
BY
(Unfold `dM-to-FL` 0
   THEN (InstLemma `lattice-extend-is-hom` [⌜names(I) names(I)⌝;⌜union-deq(names(I);names(I);NamesDeq;NamesDeq)⌝;
         ⌜face_lattice(I)⌝;⌜face_lattice-deq()⌝;⌜λx.case of inl(a) => (a=1) inr(a) => (a=0)⌝]⋅
         THENA Auto
         )
   THEN Fold `free-DeMorgan-lattice` (-1)
   THEN Auto) }

1
1. fset(ℕ)
2. Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I))
3. ∀i:names(I). (((g <i>(i=1) ∈ Point(face_lattice(I))) ∧ ((g <1-i>(i=0) ∈ Point(face_lattice(I))))
4. Point(dM(I))
5. λac.lattice-extend(face_lattice(I);union-deq(names(I);names(I);NamesDeq;NamesDeq);face_lattice-deq();λx.case x
                                                                                                            of inl(a) =>
                                                                                                            (a=1)
                                                                                                            inr(a) =>
                                                                                                            (a=0);ac)
   ∈ Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I))
⊢ lattice-extend(face_lattice(I);union-deq(names(I);names(I);NamesDeq;NamesDeq);face_lattice-deq();λx.case x
                                                                                                       of inl(a) =>
                                                                                                       (a=1)
                                                                                                       inr(a) =>
                                                                                                       (a=0);x)
(g x)
∈ Point(face_lattice(I))


Latex:


Latex:

1.  I  :  fset(\mBbbN{})
2.  g  :  Hom(free-DeMorgan-lattice(names(I);NamesDeq);face\_lattice(I))
3.  \mforall{}i:names(I).  (((g  <i>)  =  (i=1))  \mwedge{}  ((g  ə-i>)  =  (i=0)))
4.  x  :  Point(dM(I))
\mvdash{}  dM-to-FL(I;x)  =  (g  x)


By


Latex:
(Unfold  `dM-to-FL`  0
  THEN  (InstLemma  `lattice-extend-is-hom`  [\mkleeneopen{}names(I)  +  names(I)\mkleeneclose{};
              \mkleeneopen{}union-deq(names(I);names(I);NamesDeq;NamesDeq)\mkleeneclose{};\mkleeneopen{}face\_lattice(I)\mkleeneclose{};\mkleeneopen{}face\_lattice-deq()\mkleeneclose{};
              \mkleeneopen{}\mlambda{}x.case  x  of  inl(a)  =>  (a=1)  |  inr(a)  =>  (a=0)\mkleeneclose{}]\mcdot{}
              THENA  Auto
              )
  THEN  Fold  `free-DeMorgan-lattice`  (-1)
  THEN  Auto)




Home Index