Step
*
1
of Lemma
dM-to-FL-unique
1. I : fset(ℕ)
2. g : Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I))
3. ∀i:names(I). (((g <i>) = (i=1) ∈ Point(face_lattice(I))) ∧ ((g <1-i>) = (i=0) ∈ Point(face_lattice(I))))
4. x : Point(dM(I))
⊢ dM-to-FL(I;x) = (g x) ∈ Point(face_lattice(I))
BY
{ (Unfold `dM-to-FL` 0
THEN (InstLemma `lattice-extend-is-hom` [⌜names(I) + names(I)⌝;⌜union-deq(names(I);names(I);NamesDeq;NamesDeq)⌝;
⌜face_lattice(I)⌝;⌜face_lattice-deq()⌝;⌜λx.case x of inl(a) => (a=1) | inr(a) => (a=0)⌝]⋅
THENA Auto
)
THEN Fold `free-DeMorgan-lattice` (-1)
THEN Auto) }
1
1. I : fset(ℕ)
2. g : Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I))
3. ∀i:names(I). (((g <i>) = (i=1) ∈ Point(face_lattice(I))) ∧ ((g <1-i>) = (i=0) ∈ Point(face_lattice(I))))
4. x : Point(dM(I))
5. λac.lattice-extend(face_lattice(I);union-deq(names(I);names(I);NamesDeq;NamesDeq);face_lattice-deq();λx.case x
of inl(a) =>
(a=1)
| inr(a) =>
(a=0);ac)
∈ Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I))
⊢ lattice-extend(face_lattice(I);union-deq(names(I);names(I);NamesDeq;NamesDeq);face_lattice-deq();λx.case x
of inl(a) =>
(a=1)
| inr(a) =>
(a=0);x)
= (g x)
∈ Point(face_lattice(I))
Latex:
Latex:
1. I : fset(\mBbbN{})
2. g : Hom(free-DeMorgan-lattice(names(I);NamesDeq);face\_lattice(I))
3. \mforall{}i:names(I). (((g <i>) = (i=1)) \mwedge{} ((g ə-i>) = (i=0)))
4. x : Point(dM(I))
\mvdash{} dM-to-FL(I;x) = (g x)
By
Latex:
(Unfold `dM-to-FL` 0
THEN (InstLemma `lattice-extend-is-hom` [\mkleeneopen{}names(I) + names(I)\mkleeneclose{};
\mkleeneopen{}union-deq(names(I);names(I);NamesDeq;NamesDeq)\mkleeneclose{};\mkleeneopen{}face\_lattice(I)\mkleeneclose{};\mkleeneopen{}face\_lattice-deq()\mkleeneclose{};
\mkleeneopen{}\mlambda{}x.case x of inl(a) => (a=1) | inr(a) => (a=0)\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN Fold `free-DeMorgan-lattice` (-1)
THEN Auto)
Home
Index