Nuprl Lemma : dM-to-FL-unique

[I:fset(ℕ)]. ∀[g:Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I))].
  ∀[x:Point(dM(I))]. (dM-to-FL(I;x) (g x) ∈ Point(face_lattice(I))) 
  supposing ∀i:names(I). (((g <i>(i=1) ∈ Point(face_lattice(I))) ∧ ((g <1-i>(i=0) ∈ Point(face_lattice(I))))


Proof




Definitions occuring in Statement :  dM-to-FL: dM-to-FL(I;z) fl1: (x=1) fl0: (x=0) face_lattice: face_lattice(I) dM_opp: <1-x> dM_inc: <x> dM: dM(I) names-deq: NamesDeq names: names(I) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) bounded-lattice-hom: Hom(l1;l2) lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} so_apply: x[s] bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt dM-to-FL: dM-to-FL(I;z) all: x:A. B[x] implies:  Q compose: g squash: T true: True iff: ⇐⇒ Q rev_implies:  Q dminc: <i> dM_inc: <x> dmopp: <1-i> dM_opp: <1-x> top: Top
Lemmas referenced :  lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf all_wf names_wf face_lattice_wf dM_inc_wf subtype_rel-equal free-DeMorgan-lattice_wf names-deq_wf fl1_wf dM_opp_wf fl0_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf fset_wf nat_wf lattice-extend-is-hom union-deq_wf face_lattice-deq_wf free-dist-lattice-hom-unique squash_wf true_wf lattice-extend-dl-inc subtype_rel_self iff_weakening_equal dM-point free-dl-point
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule instantiate lambdaEquality productEquality cumulativity because_Cache independent_isectElimination isect_memberEquality axiomEquality setElimination rename equalityTransitivity equalitySymmetry unionEquality lambdaFormation unionElimination dependent_functionElimination independent_functionElimination functionExtensionality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination applyLambdaEquality voidElimination voidEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[g:Hom(free-DeMorgan-lattice(names(I);NamesDeq);face\_lattice(I))].
    \mforall{}[x:Point(dM(I))].  (dM-to-FL(I;x)  =  (g  x)) 
    supposing  \mforall{}i:names(I).  (((g  <i>)  =  (i=1))  \mwedge{}  ((g  ə-i>)  =  (i=0)))



Date html generated: 2019_11_04-PM-05_33_49
Last ObjectModification: 2018_08_21-PM-02_03_15

Theory : cubical!type!theory


Home Index