Nuprl Lemma : dM-to-FL-unique
∀[I:fset(ℕ)]. ∀[g:Hom(free-DeMorgan-lattice(names(I);NamesDeq);face_lattice(I))].
  ∀[x:Point(dM(I))]. (dM-to-FL(I;x) = (g x) ∈ Point(face_lattice(I))) 
  supposing ∀i:names(I). (((g <i>) = (i=1) ∈ Point(face_lattice(I))) ∧ ((g <1-i>) = (i=0) ∈ Point(face_lattice(I))))
Proof
Definitions occuring in Statement : 
dM-to-FL: dM-to-FL(I;z)
, 
fl1: (x=1)
, 
fl0: (x=0)
, 
face_lattice: face_lattice(I)
, 
dM_opp: <1-x>
, 
dM_inc: <x>
, 
dM: dM(I)
, 
names-deq: NamesDeq
, 
names: names(I)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
DeMorgan-algebra: DeMorganAlgebra
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
guard: {T}
, 
so_apply: x[s]
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
dM-to-FL: dM-to-FL(I;z)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
dminc: <i>
, 
dM_inc: <x>
, 
dmopp: <1-i>
, 
dM_opp: <1-x>
, 
top: Top
Lemmas referenced : 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
all_wf, 
names_wf, 
face_lattice_wf, 
dM_inc_wf, 
subtype_rel-equal, 
free-DeMorgan-lattice_wf, 
names-deq_wf, 
fl1_wf, 
dM_opp_wf, 
fl0_wf, 
bounded-lattice-hom_wf, 
bdd-distributive-lattice_wf, 
fset_wf, 
nat_wf, 
lattice-extend-is-hom, 
union-deq_wf, 
face_lattice-deq_wf, 
free-dist-lattice-hom-unique, 
squash_wf, 
true_wf, 
lattice-extend-dl-inc, 
subtype_rel_self, 
iff_weakening_equal, 
dM-point, 
free-dl-point
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
axiomEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
lambdaFormation, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
functionExtensionality, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
applyLambdaEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[g:Hom(free-DeMorgan-lattice(names(I);NamesDeq);face\_lattice(I))].
    \mforall{}[x:Point(dM(I))].  (dM-to-FL(I;x)  =  (g  x)) 
    supposing  \mforall{}i:names(I).  (((g  <i>)  =  (i=1))  \mwedge{}  ((g  ə-i>)  =  (i=0)))
Date html generated:
2019_11_04-PM-05_33_49
Last ObjectModification:
2018_08_21-PM-02_03_15
Theory : cubical!type!theory
Home
Index