Nuprl Lemma : dcff-inj-bijection

[A,B:Type]. ∀[X:j⊢]. ∀[I:fset(ℕ)]. ∀[a:X(I)].
  Bij(cubical-fun-family(X; discr(A); discr(B); I; a);A ⟶ B;λw.dcff-inj(I;w))


Proof




Definitions occuring in Statement :  dcff-inj: dcff-inj(I;w) discrete-cubical-type: discr(T) cubical-fun-family: cubical-fun-family(X; A; B; I; a) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) biject: Bij(A;B;f) nat: uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cubical-fun-family: cubical-fun-family(X; A; B; I; a) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) cubical-type-at: A(a) presheaf-type-at: A(a) discrete-cubical-type: discr(T) discrete-presheaf-type: discr(T) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) dcff-inj: dcff-inj(I;w) psdcff-inj: psdcff-inj(I;w)
Lemmas referenced :  psdcff-inj-bijection cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma cat_id_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[A,B:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].
    Bij(cubical-fun-family(X;  discr(A);  discr(B);  I;  a);A  {}\mrightarrow{}  B;\mlambda{}w.dcff-inj(I;w))



Date html generated: 2020_05_20-PM-02_35_27
Last ObjectModification: 2020_04_03-PM-08_45_46

Theory : cubical!type!theory


Home Index