Nuprl Lemma : dcff-inj-bijection
∀[A,B:Type]. ∀[X:j⊢]. ∀[I:fset(ℕ)]. ∀[a:X(I)].
  Bij(cubical-fun-family(X; discr(A); discr(B); I; a);A ⟶ B;λw.dcff-inj(I;w))
Proof
Definitions occuring in Statement : 
dcff-inj: dcff-inj(I;w)
, 
discrete-cubical-type: discr(T)
, 
cubical-fun-family: cubical-fun-family(X; A; B; I; a)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
biject: Bij(A;B;f)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube-cat: CubeCat
, 
all: ∀x:A. B[x]
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cubical-fun-family: cubical-fun-family(X; A; B; I; a)
, 
presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a)
, 
cubical-type-at: A(a)
, 
presheaf-type-at: A(a)
, 
discrete-cubical-type: discr(T)
, 
discrete-presheaf-type: discr(T)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
, 
cubical-type-ap-morph: (u a f)
, 
presheaf-type-ap-morph: (u a f)
, 
dcff-inj: dcff-inj(I;w)
, 
psdcff-inj: psdcff-inj(I;w)
Lemmas referenced : 
psdcff-inj-bijection, 
cube-cat_wf, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma, 
cat_id_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop
Latex:
\mforall{}[A,B:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].
    Bij(cubical-fun-family(X;  discr(A);  discr(B);  I;  a);A  {}\mrightarrow{}  B;\mlambda{}w.dcff-inj(I;w))
Date html generated:
2020_05_20-PM-02_35_27
Last ObjectModification:
2020_04_03-PM-08_45_46
Theory : cubical!type!theory
Home
Index