Nuprl Lemma : discrete-cubical-term-at-morph

[T:Type]. ∀[X:j⊢]. ∀[t:{X ⊢ _:discr(T)}].  ∀I,J:fset(ℕ). ∀f:J ⟶ I. ∀a:X(I).  (t(a) t(f(a)) ∈ T)


Proof




Definitions occuring in Statement :  discrete-cubical-type: discr(T) cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet discrete-cubical-type: discr(T) discrete-presheaf-type: discr(T) cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cubical-term-at: u(a) presheaf-term-at: u(a) cube-set-restriction: f(s) psc-restriction: f(s)
Lemmas referenced :  discrete-presheaf-term-at-morph cube-cat_wf cubical-term-sq-presheaf-term cat_ob_pair_lemma cat_arrow_triple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:discr(T)\}].    \mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}a:X(I).    (t(a)  =  t(f(a)))



Date html generated: 2020_05_20-PM-02_31_29
Last ObjectModification: 2020_04_03-PM-08_41_51

Theory : cubical!type!theory


Home Index