Nuprl Lemma : discrete-cubical-term-at-morph
∀[T:Type]. ∀[X:j⊢]. ∀[t:{X ⊢ _:discr(T)}].  ∀I,J:fset(ℕ). ∀f:J ⟶ I. ∀a:X(I).  (t(a) = t(f(a)) ∈ T)
Proof
Definitions occuring in Statement : 
discrete-cubical-type: discr(T)
, 
cubical-term-at: u(a)
, 
cubical-term: {X ⊢ _:A}
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
names-hom: I ⟶ J
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
discrete-cubical-type: discr(T)
, 
discrete-presheaf-type: discr(T)
, 
cube-cat: CubeCat
, 
all: ∀x:A. B[x]
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cubical-term-at: u(a)
, 
presheaf-term-at: u(a)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
Lemmas referenced : 
discrete-presheaf-term-at-morph, 
cube-cat_wf, 
cubical-term-sq-presheaf-term, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop, 
dependent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[t:\{X  \mvdash{}  \_:discr(T)\}].    \mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}a:X(I).    (t(a)  =  t(f(a)))
Date html generated:
2020_05_20-PM-02_31_29
Last ObjectModification:
2020_04_03-PM-08_41_51
Theory : cubical!type!theory
Home
Index