Step
*
1
of Lemma
discrete-path
1. T : Type
2. X : CubicalSet{j}
3. ∀[pth:{X ⊢ _:Path(discr(T))}]. (pth = refl(pth @ 0(𝕀)) ∈ {X ⊢ _:Path(discr(T))})
4. a : {X ⊢ _:discr(T)}
5. b : {X ⊢ _:discr(T)}
6. p : {X ⊢ _:(Path_discr(T) a b)}
7. p = refl(p @ 0(𝕀)) ∈ {X ⊢ _:Path(discr(T))}
⊢ p = refl(a) ∈ {X ⊢ _:(Path_discr(T) a b)}
BY
{ ((Subst' p @ 0(𝕀) = a ∈ {X ⊢ _:discr(T)} -1 THENA Auto) THEN BLemma `paths-equal` THEN Auto) }
Latex:
Latex:
1. T : Type
2. X : CubicalSet\{j\}
3. \mforall{}[pth:\{X \mvdash{} \_:Path(discr(T))\}]. (pth = refl(pth @ 0(\mBbbI{})))
4. a : \{X \mvdash{} \_:discr(T)\}
5. b : \{X \mvdash{} \_:discr(T)\}
6. p : \{X \mvdash{} \_:(Path\_discr(T) a b)\}
7. p = refl(p @ 0(\mBbbI{}))
\mvdash{} p = refl(a)
By
Latex:
((Subst' p @ 0(\mBbbI{}) = a -1 THENA Auto) THEN BLemma `paths-equal` THEN Auto)
Home
Index