Nuprl Lemma : discrete-path
∀[T:Type]. ∀[X:j⊢]. ∀[a,b:{X ⊢ _:discr(T)}]. ∀[p:{X ⊢ _:(Path_discr(T) a b)}].
  (p = refl(a) ∈ {X ⊢ _:(Path_discr(T) a b)})
Proof
Definitions occuring in Statement : 
cubical-refl: refl(a)
, 
path-type: (Path_A a b)
, 
discrete-cubical-type: discr(T)
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
Lemmas referenced : 
discrete-pathtype, 
path-type-subtype, 
discrete-cubical-type_wf, 
cubical-term_wf, 
path-type_wf, 
cubical_set_wf, 
istype-universe, 
cubical-path-app-0, 
equal_wf, 
pathtype_wf, 
cubical-refl_wf, 
paths-equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
universeIsType, 
instantiate, 
cumulativity, 
because_Cache, 
universeEquality, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
equalityTransitivity, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[a,b:\{X  \mvdash{}  \_:discr(T)\}].  \mforall{}[p:\{X  \mvdash{}  \_:(Path\_discr(T)  a  b)\}].    (p  =  refl(a))
Date html generated:
2020_05_20-PM-03_36_51
Last ObjectModification:
2020_04_07-PM-04_28_20
Theory : cubical!type!theory
Home
Index