Nuprl Lemma : discrete-pathtype

[T:Type]. ∀[X:j⊢]. ∀[pth:{X ⊢ _:Path(discr(T))}].  (pth refl(pth 0(𝕀)) ∈ {X ⊢ _:Path(discr(T))})


Proof




Definitions occuring in Statement :  cubical-refl: refl(a) cubical-path-app: pth r pathtype: Path(A) interval-0: 0(𝕀) discrete-cubical-type: discr(T) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-term-at: u(a) uimplies: supposing a pathtype: Path(A) cubical-fun: (A ⟶ B) all: x:A. B[x] cubical-fun-family: cubical-fun-family(X; A; B; I; a) squash: T subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) interval-type: 𝕀 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) interval-presheaf: 𝕀 lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt discrete-cubical-type: discr(T) cubical-refl: refl(a) term-to-path: <>(a) cubical-lambda: b) cubical-path-app: pth r csm-ap-term: (t)s cubicalpath-app: pth r cubical-app: app(w; u) interval-0: 0(𝕀) cubical-term: {X ⊢ _:A} prop: true: True nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q false: False names-hom: I ⟶ J so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) names: names(I) guard: {T} iff: ⇐⇒ Q rev_implies:  Q DeMorgan-algebra: DeMorganAlgebra dma-neg: ¬(x) dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dM0: 0 lattice-0: 0 empty-fset: {} nil: [] it: opposite-lattice: opposite-lattice(L) lattice-1: 1 fset-singleton: {x} cons: [a b] dM1: 1 or: P ∨ Q lattice-meet: a ∧ b fset-ac-glb: fset-ac-glb(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) fset-union: x ⋃ y l-union: as ⋃ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L lattice-join: a ∨ b so_lambda: λ2y.t[x; y] lattice-fset-meet: /\(s)
Lemmas referenced :  I_cube_wf fset_wf nat_wf cubical-term-equal pathtype_wf discrete-cubical-type_wf cubical-term_wf cubical_set_wf istype-universe cubical-term-at_wf cubical_type_at_pair_lemma names-hom_wf istype-cubical-type-at cube-set-restriction_wf interval-type_wf cubical-type-ap-morph_wf nh-comp_wf subtype_rel-equal cubical-type-at_wf interval-type-at I_cube_pair_redex_lemma cubical_type_ap_morph_pair_lemma cc_fst_adjoin_cube_lemma nh-id_wf dM0_wf subtype_rel_self equal_wf squash_wf true_wf istype-void istype-le fset-singleton_wf dM_inc_wf member-fset-singleton int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self fset-member_wf names_wf interval-type-ap-morph iff_weakening_equal dM-lift_wf2 dM-lift-0 dM1_wf nh-id-left lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift-1 dM_opp_wf dM-lift-inc dM-lift-opp neg-dM1 one-dimensional-dM dM-lift-meet dM-lift-join lattice-join-1 bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype DeMorgan-algebra_wf bdd-distributive-lattice_wf bdd-lattice_wf dma-neg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis equalityTransitivity equalitySymmetry independent_isectElimination universeIsType instantiate cumulativity sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType universeEquality dependent_functionElimination Error :memTop,  applyLambdaEquality setElimination rename imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt functionIsType because_Cache equalityIstype applyEquality hyp_replacement lambdaEquality_alt natural_numberEquality independent_pairFormation lambdaFormation_alt voidElimination intEquality productElimination independent_functionElimination productEquality isectEquality promote_hyp unionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[pth:\{X  \mvdash{}  \_:Path(discr(T))\}].    (pth  =  refl(pth  @  0(\mBbbI{})))



Date html generated: 2020_05_20-PM-03_36_27
Last ObjectModification: 2020_04_07-PM-04_29_09

Theory : cubical!type!theory


Home Index