Nuprl Lemma : discrete-pathtype
∀[T:Type]. ∀[X:j⊢]. ∀[pth:{X ⊢ _:Path(discr(T))}].  (pth = refl(pth @ 0(𝕀)) ∈ {X ⊢ _:Path(discr(T))})
Proof
Definitions occuring in Statement : 
cubical-refl: refl(a)
, 
cubical-path-app: pth @ r
, 
pathtype: Path(A)
, 
interval-0: 0(𝕀)
, 
discrete-cubical-type: discr(T)
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-term-at: u(a)
, 
uimplies: b supposing a
, 
pathtype: Path(A)
, 
cubical-fun: (A ⟶ B)
, 
all: ∀x:A. B[x]
, 
cubical-fun-family: cubical-fun-family(X; A; B; I; a)
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
interval-type: 𝕀
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
interval-presheaf: 𝕀
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
discrete-cubical-type: discr(T)
, 
cubical-refl: refl(a)
, 
term-to-path: <>(a)
, 
cubical-lambda: (λb)
, 
cubical-path-app: pth @ r
, 
csm-ap-term: (t)s
, 
cubicalpath-app: pth @ r
, 
cubical-app: app(w; u)
, 
interval-0: 0(𝕀)
, 
cubical-term: {X ⊢ _:A}
, 
prop: ℙ
, 
true: True
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
names-hom: I ⟶ J
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
names: names(I)
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
DeMorgan-algebra: DeMorganAlgebra
, 
dma-neg: ¬(x)
, 
dm-neg: ¬(x)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
dM0: 0
, 
lattice-0: 0
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
opposite-lattice: opposite-lattice(L)
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
dM1: 1
, 
or: P ∨ Q
, 
lattice-meet: a ∧ b
, 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2)
, 
fset-minimals: fset-minimals(x,y.less[x; y]; s)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
fset-union: x ⋃ y
, 
l-union: as ⋃ bs
, 
insert: insert(a;L)
, 
eval_list: eval_list(t)
, 
deq-member: x ∈b L
, 
lattice-join: a ∨ b
, 
so_lambda: λ2x y.t[x; y]
, 
lattice-fset-meet: /\(s)
Lemmas referenced : 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
pathtype_wf, 
discrete-cubical-type_wf, 
cubical-term_wf, 
cubical_set_wf, 
istype-universe, 
cubical-term-at_wf, 
cubical_type_at_pair_lemma, 
names-hom_wf, 
istype-cubical-type-at, 
cube-set-restriction_wf, 
interval-type_wf, 
cubical-type-ap-morph_wf, 
nh-comp_wf, 
subtype_rel-equal, 
cubical-type-at_wf, 
interval-type-at, 
I_cube_pair_redex_lemma, 
cubical_type_ap_morph_pair_lemma, 
cc_fst_adjoin_cube_lemma, 
nh-id_wf, 
dM0_wf, 
subtype_rel_self, 
equal_wf, 
squash_wf, 
true_wf, 
istype-void, 
istype-le, 
fset-singleton_wf, 
dM_inc_wf, 
member-fset-singleton, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
fset-member_wf, 
names_wf, 
interval-type-ap-morph, 
iff_weakening_equal, 
dM-lift_wf2, 
dM-lift-0, 
dM1_wf, 
nh-id-left, 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
dM-lift-1, 
dM_opp_wf, 
dM-lift-inc, 
dM-lift-opp, 
neg-dM1, 
one-dimensional-dM, 
dM-lift-meet, 
dM-lift-join, 
lattice-join-1, 
bdd-distributive-lattice-subtype-bdd-lattice, 
DeMorgan-algebra-subtype, 
DeMorgan-algebra_wf, 
bdd-distributive-lattice_wf, 
bdd-lattice_wf, 
dma-neg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
functionExtensionality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType, 
instantiate, 
cumulativity, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
universeEquality, 
dependent_functionElimination, 
Error :memTop, 
applyLambdaEquality, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality_alt, 
functionIsType, 
because_Cache, 
equalityIstype, 
applyEquality, 
hyp_replacement, 
lambdaEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation_alt, 
voidElimination, 
intEquality, 
productElimination, 
independent_functionElimination, 
productEquality, 
isectEquality, 
promote_hyp, 
unionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[pth:\{X  \mvdash{}  \_:Path(discr(T))\}].    (pth  =  refl(pth  @  0(\mBbbI{})))
Date html generated:
2020_05_20-PM-03_36_27
Last ObjectModification:
2020_04_07-PM-04_29_09
Theory : cubical!type!theory
Home
Index