Nuprl Lemma : lattice-join-1

[l:BoundedLattice]. ∀[x:Point(l)].  (1 ∨ 1 ∈ Point(l))


Proof




Definitions occuring in Statement :  bdd-lattice: BoundedLattice lattice-1: 1 lattice-join: a ∨ b lattice-point: Point(l) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bdd-lattice: BoundedLattice uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  le-lattice-1 lattice-le-iff bdd-lattice-subtype-lattice lattice-1_wf equal_wf squash_wf true_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-join_wf iff_weakening_equal lattice_properties bdd-lattice_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule setElimination rename productElimination independent_isectElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality instantiate productEquality cumulativity because_Cache natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[x:Point(l)].    (1  \mvee{}  x  =  1)



Date html generated: 2020_05_20-AM-08_26_07
Last ObjectModification: 2017_07_28-AM-09_13_08

Theory : lattices


Home Index