Nuprl Lemma : neg-dM1

[J:fset(ℕ)]. (1) 0 ∈ Point(dM(J)))


Proof




Definitions occuring in Statement :  dM1: 1 dM0: 0 dM: dM(I) dma-neg: ¬(x) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] dM1: 1 dM0: 0 member: t ∈ T and: P ∧ Q
Lemmas referenced :  DeMorgan-algebra-laws dM_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination

Latex:
\mforall{}[J:fset(\mBbbN{})].  (\mneg{}(1)  =  0)



Date html generated: 2016_05_18-AM-11_57_04
Last ObjectModification: 2015_12_28-PM-03_08_28

Theory : cubical!type!theory


Home Index