Nuprl Lemma : neg-dM1
∀[J:fset(ℕ)]. (¬(1) = 0 ∈ Point(dM(J)))
Proof
Definitions occuring in Statement : 
dM1: 1
, 
dM0: 0
, 
dM: dM(I)
, 
dma-neg: ¬(x)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
dM1: 1
, 
dM0: 0
, 
member: t ∈ T
, 
and: P ∧ Q
Lemmas referenced : 
DeMorgan-algebra-laws, 
dM_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination
Latex:
\mforall{}[J:fset(\mBbbN{})].  (\mneg{}(1)  =  0)
Date html generated:
2016_05_18-AM-11_57_04
Last ObjectModification:
2015_12_28-PM-03_08_28
Theory : cubical!type!theory
Home
Index