Nuprl Lemma : neg-dM1
∀[J:fset(ℕ)]. (¬(1) = 0 ∈ Point(dM(J)))
Proof
Definitions occuring in Statement :
dM1: 1
,
dM0: 0
,
dM: dM(I)
,
dma-neg: ¬(x)
,
lattice-point: Point(l)
,
fset: fset(T)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
dM1: 1
,
dM0: 0
,
member: t ∈ T
,
and: P ∧ Q
Lemmas referenced :
DeMorgan-algebra-laws,
dM_wf,
fset_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
productElimination
Latex:
\mforall{}[J:fset(\mBbbN{})]. (\mneg{}(1) = 0)
Date html generated:
2016_05_18-AM-11_57_04
Last ObjectModification:
2015_12_28-PM-03_08_28
Theory : cubical!type!theory
Home
Index