Step
*
2
of Lemma
equiv-path2-1
.....assertion.....
1. G : CubicalSet{j}
2. A : {G ⊢ _}
3. B : {G ⊢ _}
4. f : {G ⊢ _:Equiv(A;B)}
5. cA : G +⊢ Compositon(A)
6. cB : G +⊢ Compositon(B)
7. G.𝕀, ((q=0) ∨ (q=1)) ⊢ (if (q=0) then (A)p else (B)p)
8. case-type-comp(G.𝕀; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p)
∈ G.𝕀, ((q=0) ∨ (q=1)) +⊢ Compositon((if (q=0) then (A)p else (B)p))
⊢ G ⊢ (1(𝔽)
⇒ (((q=0) ∨ (q=1)))[1(𝕀)])
BY
{ ((RWW "csm-face-or csm-face-one csm-face-zero" 0 THENA Auto)
THEN (Subst' (q)[1(𝕀)] ~ 1(𝕀) 0 THENA (CsmUnfolding THEN Auto))
) }
1
1. G : CubicalSet{j}
2. A : {G ⊢ _}
3. B : {G ⊢ _}
4. f : {G ⊢ _:Equiv(A;B)}
5. cA : G +⊢ Compositon(A)
6. cB : G +⊢ Compositon(B)
7. G.𝕀, ((q=0) ∨ (q=1)) ⊢ (if (q=0) then (A)p else (B)p)
8. case-type-comp(G.𝕀; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p)
∈ G.𝕀, ((q=0) ∨ (q=1)) +⊢ Compositon((if (q=0) then (A)p else (B)p))
⊢ G ⊢ (1(𝔽)
⇒ ((1(𝕀)=0) ∨ (1(𝕀)=1)))
Latex:
Latex:
.....assertion.....
1. G : CubicalSet\{j\}
2. A : \{G \mvdash{} \_\}
3. B : \{G \mvdash{} \_\}
4. f : \{G \mvdash{} \_:Equiv(A;B)\}
5. cA : G +\mvdash{} Compositon(A)
6. cB : G +\mvdash{} Compositon(B)
7. G.\mBbbI{}, ((q=0) \mvee{} (q=1)) \mvdash{} (if (q=0) then (A)p else (B)p)
8. case-type-comp(G.\mBbbI{}; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p)
\mmember{} G.\mBbbI{}, ((q=0) \mvee{} (q=1)) +\mvdash{} Compositon((if (q=0) then (A)p else (B)p))
\mvdash{} G \mvdash{} (1(\mBbbF{}) {}\mRightarrow{} (((q=0) \mvee{} (q=1)))[1(\mBbbI{})])
By
Latex:
((RWW "csm-face-or csm-face-one csm-face-zero" 0 THENA Auto)
THEN (Subst' (q)[1(\mBbbI{})] \msim{} 1(\mBbbI{}) 0 THENA (CsmUnfolding THEN Auto))
)
Home
Index