Nuprl Lemma : equiv-path2-1

[G:j⊢]. ∀[A,B:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(A;B)}]. ∀[cA:G +⊢ Compositon(A)]. ∀[cB:G +⊢ Compositon(B)].
  ((equiv-path2(G;A;B;cA;cB;f))[1(𝕀)] cB ∈ +⊢ Compositon(B))


Proof




Definitions occuring in Statement :  equiv-path2: equiv-path2(G;A;B;cA;cB;f) csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) cubical-equiv: Equiv(T;A) interval-1: 1(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) all: x:A. B[x] implies:  Q uimplies: supposing a equiv-path2: equiv-path2(G;A;B;cA;cB;f) subtype_rel: A ⊆B csm-comp-structure: (cA)tau csm-comp: F compose: g squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q interval-1: 1(𝕀) csm-id-adjoin: [u] csm-ap-term: (t)s csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x pi2: snd(t) prop: pi1: fst(t) cubical-type: {X ⊢ _} face-term-implies: Gamma ⊢ (phi  psi) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] cubical-type-at: A(a) face-type: 𝔽 I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt same-cubical-type: Gamma ⊢ B
Lemmas referenced :  cc-snd_wf interval-type_wf csm-ap-type_wf cube-context-adjoin_wf cc-fst_wf_interval case-type_wf face-zero_wf face-one_wf thin-context-subset same-cubical-type-zero-and-one face-0_wf csm-glue-comp-agrees cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-1 csm-comp-structure_wf2 face-or_wf cubical-equiv-by-cases_wf composition-structure_wf istype-cubical-term cubical-equiv_wf cubical-type_wf cubical_set_wf subset-cubical-type context-subset_wf context-subset-is-subset case-type-comp-disjoint csm-comp-structure_wf csm-context-subset-subtype2 face-term-implies_wf face-zero-and-one iff_weakening_equal face-term-implies-same csm-face-or csm-face-zero csm-face-one face-one-interval-1 interval-1_wf face-term-implies-or2 squash_wf true_wf face-type_wf subtype_rel_self csm-case-type-comp case-type-comp-false-true csm-id_wf composition-structure-subset face-zero-interval-1 lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf lattice-1_wf I_cube_wf fset_wf nat_wf istype-universe subtype_rel_wf csm-comp-structure-id csm-ap-id-type sub_cubical_set_self csm-case-type case-type-same2 face-1_wf context-1-subset same-cubical-type-0 face-and_wf face-term-implies-subset face-term-and-implies1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule equalityTransitivity equalitySymmetry inhabitedIsType lambdaFormation_alt instantiate because_Cache independent_isectElimination equalityIstype dependent_functionElimination independent_functionElimination applyEquality lambdaEquality_alt hyp_replacement universeIsType imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination Error :memTop,  universeEquality setElimination rename productEquality cumulativity isectEquality

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(A;B)\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].
\mforall{}[cB:G  +\mvdash{}  Compositon(B)].
    ((equiv-path2(G;A;B;cA;cB;f))[1(\mBbbI{})]  =  cB)



Date html generated: 2020_05_20-PM-07_29_03
Last ObjectModification: 2020_04_28-PM-04_51_49

Theory : cubical!type!theory


Home Index