Nuprl Lemma : csm-case-type

[phi,A,B,s:Top].  (((if phi then else B))s (if (phi)s then (A)s else (B)s))


Proof




Definitions occuring in Statement :  case-type: (if phi then else B) csm-ap-term: (t)s csm-ap-type: (AF)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T case-type: (if phi then else B) case-cube: case-cube(phi;A;B;I;rho) csm-ap-type: (AF)s csm-ap-term: (t)s cubical-term-at: u(a) csm-ap: (s)x cubical-type-at: A(a) pi1: fst(t) so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cubical-type-ap-morph: (u f) pi2: snd(t)
Lemmas referenced :  top_wf lifting-strict-spread has-value_wf_base base_wf is-exception_wf strict4-spread
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis sqequalAxiom extract_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache baseClosed voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueApply baseApply closedConclusion applyExceptionCases inrFormation imageMemberEquality imageElimination exceptionSqequal inlFormation

Latex:
\mforall{}[phi,A,B,s:Top].    (((if  phi  then  A  else  B))s  \msim{}  (if  (phi)s  then  (A)s  else  (B)s))



Date html generated: 2017_01_10-AM-08_51_28
Last ObjectModification: 2016_12_27-PM-01_48_21

Theory : cubical!type!theory


Home Index