Nuprl Lemma : same-cubical-type-zero-and-one

[G:j⊢]. ∀[A,B:{G, 0(𝔽) ⊢ _}]. ∀[i:{G ⊢ _:𝕀}].  G, ((i=0) ∧ (i=1)) ⊢ B


Proof




Definitions occuring in Statement :  same-cubical-type: Gamma ⊢ B context-subset: Gamma, phi face-zero: (i=0) face-one: (i=1) face-and: (a ∧ b) face-0: 0(𝔽) interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T same-cubical-type: Gamma ⊢ B subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] implies:  Q squash: T prop: true: True cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  same-cubical-type-0 context-subset-subtype face-0_wf face-and_wf face-zero_wf face-one_wf equal_wf squash_wf true_wf istype-universe lattice-point_wf face_lattice_wf cubical-term-at_wf I_cube_wf fset_wf nat_wf cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf face-type_wf face-zero-and-one subtype_rel_self subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf iff_weakening_equal lattice-1_wf interval-type_wf context-subset_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality independent_isectElimination lambdaFormation_alt lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType instantiate universeEquality because_Cache sqequalRule natural_numberEquality imageMemberEquality baseClosed productEquality cumulativity isectEquality productElimination independent_functionElimination equalityIstype setElimination rename inhabitedIsType axiomEquality

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G,  0(\mBbbF{})  \mvdash{}  \_\}].  \mforall{}[i:\{G  \mvdash{}  \_:\mBbbI{}\}].    G,  ((i=0)  \mwedge{}  (i=1))  \mvdash{}  A  =  B



Date html generated: 2020_05_20-PM-03_01_03
Last ObjectModification: 2020_04_06-AM-10_32_52

Theory : cubical!type!theory


Home Index