Nuprl Lemma : case-type-same2

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[psi:{Gamma ⊢ _:𝔽}]. ∀[B:{Gamma, psi ⊢ _}].
  Gamma, psi ⊢ (if phi then else B) supposing Gamma, (phi ∧ psi) ⊢ B


Proof




Definitions occuring in Statement :  case-type: (if phi then else B) same-cubical-type: Gamma ⊢ B context-subset: Gamma, phi face-and: (a ∧ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B same-cubical-type: Gamma ⊢ B cubical-type: {X ⊢ _} case-type: (if phi then else B) all: x:A. B[x] case-cube: case-cube(phi;A;B;I;rho) context-subset: Gamma, phi cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt implies:  Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B cubical-type-ap-morph: (u f) pi2: snd(t) squash: T true: True
Lemmas referenced :  case-type_wf context-subset-subtype-or2 cubical-type-equal2 context-subset_wf same-cubical-type_wf face-and_wf subset-cubical-type face-term-implies-subset face-term-and-implies1 face-term-and-implies2 cubical-type_wf cubical-term_wf face-type_wf cubical_set_wf cubical_type_ap_morph_pair_lemma I_cube_wf fset_wf nat_wf names-hom_wf cube-set-restriction_wf cubical_type_at_pair_lemma I_cube_pair_redex_lemma fl-eq_wf cubical-term-at_wf subtype_rel_self lattice-point_wf face_lattice_wf lattice-1_wf eqtt_to_assert assert-fl-eq subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf cubical-type-at_wf face-and-eq-1 cube_set_restriction_pair_lemma cubical-type-ap-morph_wf squash_wf true_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 subset-I_cube istype-universe iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis applyEquality sqequalRule equalityTransitivity equalitySymmetry axiomEquality universeIsType because_Cache isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate setElimination rename productElimination dependent_functionElimination Error :memTop,  dependent_pairEquality_alt functionExtensionality functionIsType lambdaFormation_alt unionElimination equalityElimination lambdaEquality_alt productEquality cumulativity isectEquality dependent_pairFormation_alt equalityIstype promote_hyp independent_functionElimination voidElimination dependent_set_memberEquality_alt hyp_replacement applyLambdaEquality universeEquality independent_pairFormation productIsType independent_pairEquality imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
\mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].
    Gamma,  psi  \mvdash{}  (if  phi  then  A  else  B)  =  B  supposing  Gamma,  (phi  \mwedge{}  psi)  \mvdash{}  A  =  B



Date html generated: 2020_05_20-PM-03_08_56
Last ObjectModification: 2020_04_06-PM-11_41_18

Theory : cubical!type!theory


Home Index