Nuprl Lemma : composition-structure-subset
∀[Y,X:j⊢].  ∀[B:{X ⊢ _}]. (X ⊢ Compositon(B) ⊆r Y ⊢ Compositon(B)) supposing sub_cubical_set{j:l}(Y; X)
Proof
Definitions occuring in Statement : 
composition-structure: Gamma ⊢ Compositon(A)
, 
cubical-type: {X ⊢ _}
, 
sub_cubical_set: Y ⊆ X
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
prop: ℙ
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
guard: {T}
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
all: ∀x:A. B[x]
, 
cubical-type: {X ⊢ _}
, 
csm-ap-term: (t)s
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-comp: G o F
, 
interval-1: 1(𝕀)
, 
csm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
cc-snd: q
, 
cc-fst: p
, 
constant-cubical-type: (X)
, 
csm-adjoin: (s;u)
, 
compose: f o g
Lemmas referenced : 
uniform-comp-function_wf, 
subset-cubical-type, 
composition-structure_wf, 
cubical-type_wf, 
sub_cubical_set_wf, 
cubical_set_wf, 
cube_set_map_subtype3, 
cube-context-adjoin_wf, 
interval-type_wf, 
sub_cubical_set_self, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
csm-ap-term_wf, 
context-subset_wf, 
csm-context-subset-subtype3, 
cubical-term_wf, 
face-type_wf, 
cube_set_map_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
dependent_set_memberEquality_alt, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
instantiate, 
inhabitedIsType, 
functionExtensionality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
dependent_functionElimination, 
productElimination
Latex:
\mforall{}[Y,X:j\mvdash{}].
    \mforall{}[B:\{X  \mvdash{}  \_\}].  (X  \mvdash{}  Compositon(B)  \msubseteq{}r  Y  \mvdash{}  Compositon(B))  supposing  sub\_cubical\_set\{j:l\}(Y;  X)
Date html generated:
2020_05_20-PM-04_23_13
Last ObjectModification:
2020_04_13-PM-00_34_00
Theory : cubical!type!theory
Home
Index