Step
*
4
1
of Lemma
equiv-path2-1
1. G : CubicalSet{j}
2. A : {G ⊢ _}
3. B : {G ⊢ _}
4. f : {G ⊢ _:Equiv(A;B)}
5. cA : G +⊢ Compositon(A)
6. cB : G +⊢ Compositon(B)
7. G.𝕀, ((q=0) ∨ (q=1)) ⊢ (if (q=0) then (A)p else (B)p)
8. case-type-comp(G.𝕀; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p)
∈ G.𝕀, ((q=0) ∨ (q=1)) +⊢ Compositon((if (q=0) then (A)p else (B)p))
9. G ⊢ (1(𝔽)
⇒ (((q=0) ∨ (q=1)))[1(𝕀)])
10. (comp(Glue [((q=0) ∨ (q=1)) ⊢→ ((if (q=0) then (A)p else (B)p), cubical-equiv-by-cases(G;B;f))] (B)p) )[1(𝕀)]
= (case-type-comp(G.𝕀; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p))[1(𝕀)]
∈ G +⊢ Compositon(((if (q=0) then (A)p else (B)p))[1(𝕀)])
11. (case-type-comp(G.𝕀; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p))[1(𝕀)]
= cB
∈ G +⊢ Compositon(((if (q=0) then (A)p else (B)p))[1(𝕀)])
⊢ (if (1(𝕀)=0) then (A)1(G) else (B)1(G)) = B ∈ {G ⊢ _}
BY
{ Assert ⌜(if (1(𝕀)=0) then (A)1(G) else (B)1(G)) = (B)1(G) ∈ {G ⊢ _}⌝⋅ }
1
.....assertion.....
1. G : CubicalSet{j}
2. A : {G ⊢ _}
3. B : {G ⊢ _}
4. f : {G ⊢ _:Equiv(A;B)}
5. cA : G +⊢ Compositon(A)
6. cB : G +⊢ Compositon(B)
7. G.𝕀, ((q=0) ∨ (q=1)) ⊢ (if (q=0) then (A)p else (B)p)
8. case-type-comp(G.𝕀; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p)
∈ G.𝕀, ((q=0) ∨ (q=1)) +⊢ Compositon((if (q=0) then (A)p else (B)p))
9. G ⊢ (1(𝔽)
⇒ (((q=0) ∨ (q=1)))[1(𝕀)])
10. (comp(Glue [((q=0) ∨ (q=1)) ⊢→ ((if (q=0) then (A)p else (B)p), cubical-equiv-by-cases(G;B;f))] (B)p) )[1(𝕀)]
= (case-type-comp(G.𝕀; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p))[1(𝕀)]
∈ G +⊢ Compositon(((if (q=0) then (A)p else (B)p))[1(𝕀)])
11. (case-type-comp(G.𝕀; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p))[1(𝕀)]
= cB
∈ G +⊢ Compositon(((if (q=0) then (A)p else (B)p))[1(𝕀)])
⊢ (if (1(𝕀)=0) then (A)1(G) else (B)1(G)) = (B)1(G) ∈ {G ⊢ _}
2
1. G : CubicalSet{j}
2. A : {G ⊢ _}
3. B : {G ⊢ _}
4. f : {G ⊢ _:Equiv(A;B)}
5. cA : G +⊢ Compositon(A)
6. cB : G +⊢ Compositon(B)
7. G.𝕀, ((q=0) ∨ (q=1)) ⊢ (if (q=0) then (A)p else (B)p)
8. case-type-comp(G.𝕀; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p)
∈ G.𝕀, ((q=0) ∨ (q=1)) +⊢ Compositon((if (q=0) then (A)p else (B)p))
9. G ⊢ (1(𝔽)
⇒ (((q=0) ∨ (q=1)))[1(𝕀)])
10. (comp(Glue [((q=0) ∨ (q=1)) ⊢→ ((if (q=0) then (A)p else (B)p), cubical-equiv-by-cases(G;B;f))] (B)p) )[1(𝕀)]
= (case-type-comp(G.𝕀; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p))[1(𝕀)]
∈ G +⊢ Compositon(((if (q=0) then (A)p else (B)p))[1(𝕀)])
11. (case-type-comp(G.𝕀; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p))[1(𝕀)]
= cB
∈ G +⊢ Compositon(((if (q=0) then (A)p else (B)p))[1(𝕀)])
12. (if (1(𝕀)=0) then (A)1(G) else (B)1(G)) = (B)1(G) ∈ {G ⊢ _}
⊢ (if (1(𝕀)=0) then (A)1(G) else (B)1(G)) = B ∈ {G ⊢ _}
Latex:
Latex:
1. G : CubicalSet\{j\}
2. A : \{G \mvdash{} \_\}
3. B : \{G \mvdash{} \_\}
4. f : \{G \mvdash{} \_:Equiv(A;B)\}
5. cA : G +\mvdash{} Compositon(A)
6. cB : G +\mvdash{} Compositon(B)
7. G.\mBbbI{}, ((q=0) \mvee{} (q=1)) \mvdash{} (if (q=0) then (A)p else (B)p)
8. case-type-comp(G.\mBbbI{}; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p)
\mmember{} G.\mBbbI{}, ((q=0) \mvee{} (q=1)) +\mvdash{} Compositon((if (q=0) then (A)p else (B)p))
9. G \mvdash{} (1(\mBbbF{}) {}\mRightarrow{} (((q=0) \mvee{} (q=1)))[1(\mBbbI{})])
10. (comp(Glue [((q=0) \mvee{} (q=1)) \mvdash{}\mrightarrow{} ((if (q=0) then (A)p else (B)p), cubical-equiv-by-cases(G;B;f))]
(B)p) )[1(\mBbbI{})]
= (case-type-comp(G.\mBbbI{}; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p))[1(\mBbbI{})]
11. (case-type-comp(G.\mBbbI{}; (q=0); (q=1); (A)p; (B)p; (cA)p; (cB)p))[1(\mBbbI{})] = cB
\mvdash{} (if (1(\mBbbI{})=0) then (A)1(G) else (B)1(G)) = B
By
Latex:
Assert \mkleeneopen{}(if (1(\mBbbI{})=0) then (A)1(G) else (B)1(G)) = (B)1(G)\mkleeneclose{}\mcdot{}
Home
Index