Step * of Lemma equiv_comp-apply-sq

No Annotations
[H,A,E,cA,cE,I,a,b,c,d:Top].
  (equiv_comp(H;A;E;cA;cE) formal-cube(I) x,y. <a[x;y], b[x;y]>K,f. c[K;f]) I@0,a. ⋅K,f. d[K;f]) 
  equiv_comp_apply(H;A;E;cA;cE;I;a;b;c;d))
BY
((UnivCD THENA Auto)
   THEN (RWO "equiv_comp-sq" THENA Auto)
   THEN ((RWO "sigma_comp-sq" THENA Auto) THEN Reduce 0)
   THEN (RWO "pi_comp-sq" THENA Auto)
   THEN RepUR ``let cubical-lambda formal-cube`` 0
   THEN Unfold `equiv_comp_apply` 0
   THEN RepeatFor ((EqCD THEN Try (Trivial)))) }

1
1. Top
2. Top
3. Top
4. cA Top
5. cE Top
6. Top
7. Top
8. Top
9. Top
10. Top
11. Base
12. Base
13. u@0 Base
⊢ contractible_comp(H.(A ⟶ E).(E)λI,p. (fst(p));Fiber(λI,a. (snd(fst(a)));λI,p. (snd(p)));
                    λH@0,sigma,phi,u,a0,I,a@0.
                                              <cA H@0.𝕀 x,x@0. (fst(fst((sigma (m x@0)))))) 
                                               I,rho. phi (fst(rho)) ∨ dM-to-FL(I;¬(snd(rho)))) 
                                               I,rho. if (phi (fst((m rho)))==1)
                                                       then fst((u (m rho)))
                                                       else fst((a0 (fst((m rho)))))
                                                       fi 
                                               I,a. (fst((a0 (fst(a)))))) 
                                               
                                               <a@0, 1>
                                              , λJ,f,u@0.
                                                         (cE H@0.𝕀 x,x@0. (fst(fst((sigma x <fst(fst(x@0)), snd(x@0)>)\000C)))) 
                                                          I,rho.
                                                                  phi (fst(rho)) ∨ dM-to-FL(I;¬(snd(rho))) ∨ (...=1) 
                                                                                                               
                                                                                                               rho) 
                                                          I,rho. if (phi (fst(fst(rho)))==1)
                                                                     then (snd((u I <fst(fst(rho)), snd(rho)>))) 
                                                                          (snd(fst(rho)))
                                                                  if (dM-to-FL(I;¬(snd(fst(rho))))==1)
                                                                    then snd((sigma I <fst(fst(rho)), snd(rho)>))
                                                                  else (snd(fst((sigma I <fst(fst(rho)), snd(rho)>)))) I\000C 
                                                                       (cA H@0.𝕀 
                                                                        x,x@0. (fst(fst((sigma (m x@0)))))) 
                                                                        I,a. (phi (fst(a))) ∨ I,p. (snd(p))=0)) 
                                                                        I,rho. if (phi (fst((m rho)))==1)
                                                                                then fst((u (m rho)))
                                                                                else fst((a0 (fst((m rho)))))
                                                                                fi 
                                                                        I,a. (fst((a0 (fst(a)))))) 
                                                                        
                                                                        <fst(fst(rho)), snd(rho)>)
                                                                  fi 
                                                          I,a. ((snd((a0 (fst(a))))) (snd(a)))) 
                                                          
                                                          (f(a@0);u@0))
                                              >
  <λJ.J ⟶ I, λI,J,f,g. g ⋅ f>.(((E)λI,p. (fst(p)))
                         λx,x@0. <<a[x;x@0], b[x;x@0]>
                                 , λJ,f,u@0. (cE <λJ.J ⟶ I, λI,J,f,g. g ⋅ f>.𝕀.((A)λx,x@0. <a[x;m x@0], b[x;m x@0]>\000C)[1(𝕀)] 
                                              x,x@0. <a[x;m x <fst(fst(x@0)), snd(x@0)>]
                                                       b[x;m x <fst(fst(x@0)), snd(x@0)>]
                                                       >
                                              I,a. c[I;fst(fst(a))] ∨ dM-to-FL(I;¬(snd(fst(a))))) 
                                              I@0,a@0. (if (c[I@0;fst((m I@0 <fst(fst(a@0)), snd(a@0)>))]==1)
                                                          then fst(⋅)
                                                          else fst(d[I@0;fst((m I@0 <fst(fst(a@0)), snd(a@0)>))])
                                                          fi  
                                                          I@0 
                                                          
                                                          (cA 
                                                           <λJ.J ⟶ I, λI,J,f,g. g ⋅ f>.𝕀.((A)λx,x@0. <a[x;m x@0]
                                                                                              b[x;m x@0]
                                                                                              >)[1(𝕀)].𝕀 
                                                           x,x@0. <a[x;m x <fst(fst((m x@0))), ¬(snd((m x@0)))>]
                                                                    b[x;m x <fst(fst((m x@0))), ¬(snd((m x@0)))>]
                                                                    >
                                                           I,rho. 0 ∨ dM-to-FL(I;¬(snd(rho)))) 
                                                           I,rho. (snd(fst((m rho))))) 
                                                           I,a. (snd(fst(a)))) 
                                                           I@0 
                                                           <fst(a@0), ¬(snd(a@0))>))) 
                                              I@0,a@0. ((fst(d[I@0;fst(fst(a@0))])) I@0 
                                                          (cA 
                                                           <λJ.J ⟶ I, λI,J,f,g. g ⋅ f>.𝕀.((A)λx,x@0. <a[x;m x@0]
                                                                                              b[x;m x@0]
                                                                                              >)[1(𝕀)].𝕀 
                                                           x,x@0. <a[x;m x <fst(fst((m x@0))), ¬(snd((m x@0)))>]
                                                                    b[x;m x <fst(fst((m x@0))), ¬(snd((m x@0)))>]
                                                                    >
                                                           I,rho. 0 ∨ dM-to-FL(I;¬(snd(rho)))) 
                                                           I,rho. (snd(fst((m rho))))) 
                                                           I,a. (snd(fst(a)))) 
                                                           ... 
                                                           ...))) 
                                              ... 
                                              ...)
                                 >)... 
  ... 
  ... 
  ... 
  ... 
  ... 
  ... ...


Latex:


Latex:
No  Annotations
\mforall{}[H,A,E,cA,cE,I,a,b,c,d:Top].
    (equiv\_comp(H;A;E;cA;cE)  formal-cube(I)  (\mlambda{}x,y.  <a[x;y],  b[x;y]>)  (\mlambda{}K,f.  c[K;f])  (\mlambda{}I@0,a.  \mcdot{})  (\mlambda{}K,f.\000C  d[K;f])  I  1 
    \msim{}  equiv\_comp\_apply(H;A;E;cA;cE;I;a;b;c;d))


By


Latex:
((UnivCD  THENA  Auto)
  THEN  (RWO  "equiv\_comp-sq"  0  THENA  Auto)
  THEN  ((RWO  "sigma\_comp-sq"  0  THENA  Auto)  THEN  Reduce  0)
  THEN  (RWO  "pi\_comp-sq"  0  THENA  Auto)
  THEN  RepUR  ``let  cubical-lambda  formal-cube``  0
  THEN  Unfold  `equiv\_comp\_apply`  0
  THEN  RepeatFor  4  ((EqCD  THEN  Try  (Trivial))))




Home Index