Nuprl Lemma : equiv_comp-apply-sq

[H,A,E,cA,cE,I,a,b,c,d:Top].
  (equiv_comp(H;A;E;cA;cE) formal-cube(I) x,y. <a[x;y], b[x;y]>K,f. c[K;f]) I@0,a. ⋅K,f. d[K;f]) 
  equiv_comp_apply(H;A;E;cA;cE;I;a;b;c;d))


Proof




Definitions occuring in Statement :  equiv_comp_apply: equiv_comp_apply(H;A;E;cA;cE;I;a;b;c;d) equiv_comp: equiv_comp(H;A;E;cA;cE) formal-cube: formal-cube(I) nh-id: 1 it: uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] apply: a lambda: λx.A[x] pair: <a, b> sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T formal-cube: formal-cube(I) cubical-lambda: b) let: let pi1: fst(t) pi2: snd(t) all: x:A. B[x] equiv_comp_apply: equiv_comp_apply(H;A;E;cA;cE;I;a;b;c;d) cubical-sigma: Σ B cubical-fiber: Fiber(w;a) top: Top csm-ap: (s)x uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2;s3;s4] so_lambda: so_lambda4 csm-ap-type: (AF)s bfalse: ff ifthenelse: if then else fi 
Lemmas referenced :  equiv_comp-sq sigma_comp-sq pi_comp-sq cube_set_restriction_pair_lemma istype-top contractible_comp-sq strict4-spread lifting-strict-spread fl-eq-0-1-false
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache Error :memTop,  dependent_functionElimination axiomSqEquality inhabitedIsType isect_memberEquality_alt isectIsTypeImplies voidEquality voidElimination isect_memberEquality independent_isectElimination baseClosed

Latex:
\mforall{}[H,A,E,cA,cE,I,a,b,c,d:Top].
    (equiv\_comp(H;A;E;cA;cE)  formal-cube(I)  (\mlambda{}x,y.  <a[x;y],  b[x;y]>)  (\mlambda{}K,f.  c[K;f])  (\mlambda{}I@0,a.  \mcdot{})  (\mlambda{}K,f.\000C  d[K;f])  I  1 
    \msim{}  equiv\_comp\_apply(H;A;E;cA;cE;I;a;b;c;d))



Date html generated: 2020_05_20-PM-07_19_24
Last ObjectModification: 2020_04_27-PM-01_57_05

Theory : cubical!type!theory


Home Index